IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9351-d1508262.html
   My bibliography  Save this article

Energy Price Distortions and Urban Carbon Emission Efficiency: Evidence from China’s Energy-Intensive Sectors

Author

Listed:
  • Xiaozhen Wang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Binbin Liao

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
    Kewen College, Jiangsu Normal University, Xuzhou 221132, China)

  • Li Cheng

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Jingyi Li

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Xuanyadong Yang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiaolei Wang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

With a primary focus of achieving carbon neutrality, the energy-intensive industrial sectors (EIIs) contribute to more than half of China’s carbon dioxide (CO 2 ) emissions. During the process of China’s rapid economic development, distorted energy prices gradually became the main obstacle to energy conservation and emission reductions in the EIIs. Therefore, this study focused on determining the mechanisms affecting the energy price distortions of carbon emission efficiency (CEE) in China’s EIIs. Based on a stochastic frontier analysis, the changing trend of CEE in China’s EIIs was evaluated. The channels impacting the energy price distortions of CEE were further analyzed by a mediating effect and moderated mediating effect model. The main contributions and findings include the following: energy price distortions have a significant negative impact on CEE by suppressing technological innovations and hindering the restructuring of energy consumption; governmental environmental regulatory policies mitigate their suppressing effect on technological innovations and reduce the preventing effect by improving the energy consumption structure. The results suggest that market-based price reforms and moderate environmental regulation by the government could help to improve CEE in China’s EIIs. These findings are of great significance for promoting the sustainable development of the energy-intensive industrial sectors and achieving carbon neutrality.

Suggested Citation

  • Xiaozhen Wang & Binbin Liao & Li Cheng & Jingyi Li & Xuanyadong Yang & Xiaolei Wang, 2024. "Energy Price Distortions and Urban Carbon Emission Efficiency: Evidence from China’s Energy-Intensive Sectors," Sustainability, MDPI, vol. 16(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9351-:d:1508262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Zili, 2019. "Increasing returns to scale in energy-intensive sectors and its implications on climate change modeling," Energy Economics, Elsevier, vol. 83(C), pages 208-216.
    2. Gray, Wayne B. & Shadbegian, Ronald J., 2003. "Plant vintage, technology, and environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 384-402, November.
    3. Li, Wei & Sun, Wen & Li, Guomin & Jin, Baihui & Wu, Wen & Cui, Pengfei & Zhao, Guohao, 2018. "Transmission mechanism between energy prices and carbon emissions using geographically weighted regression," Energy Policy, Elsevier, vol. 115(C), pages 434-442.
    4. Mazzanti, Massimiliano & Zoboli, Roberto, 2009. "Environmental efficiency and labour productivity: Trade-off or joint dynamics? A theoretical investigation and empirical evidence from Italy using NAMEA," Ecological Economics, Elsevier, vol. 68(4), pages 1182-1194, February.
    5. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    6. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    7. Chang-Tai Hsieh & Peter J. Klenow, 2009. "Misallocation and Manufacturing TFP in China and India," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(4), pages 1403-1448.
    8. Fang, Guochang & Gao, Zhengye & Tian, Lixin & Fu, Min, 2022. "What drives urban carbon emission efficiency? – Spatial analysis based on nighttime light data," Applied Energy, Elsevier, vol. 312(C).
    9. Cui, Herui & Wei, Pengbang, 2017. "Analysis of thermal coal pricing and the coal price distortion in China from the perspective of market forces," Energy Policy, Elsevier, vol. 106(C), pages 148-154.
    10. Tan, Ruipeng & Xu, Mengmeng & Sun, Chuanwang, 2021. "The impacts of energy reallocation on economic output and CO2 emissions in China," Energy Economics, Elsevier, vol. 94(C).
    11. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    12. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.
    13. Ouyang, Xiaoling & Wei, Xiaoyun & Sun, Chuanwang & Du, Gang, 2018. "Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China," Energy Policy, Elsevier, vol. 118(C), pages 573-583.
    14. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    15. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    16. Sun, Qi & Xu, Lin & Yin, Hua, 2016. "Energy pricing reform and energy efficiency in China: Evidence from the automobile market," Resource and Energy Economics, Elsevier, vol. 44(C), pages 39-51.
    17. Shi, Xunpeng & Sun, Sizhong, 2017. "Energy price, regulatory price distortion and economic growth: A case study of China," Energy Economics, Elsevier, vol. 63(C), pages 261-271.
    18. Wang, Xiaolei & Bai, Mengqi & Xie, Chunping, 2019. "Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector," Energy Policy, Elsevier, vol. 130(C), pages 320-327.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ru Sha & Tao Ge & Jinye Li, 2022. "How Energy Price Distortions Affect China’s Economic Growth and Carbon Emissions," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    2. Sha, Ru & Li, Jinye & Ge, Tao, 2021. "How do price distortions of fossil energy sources affect China's green economic efficiency?," Energy, Elsevier, vol. 232(C).
    3. Zhu, Qingyuan & Xu, Chengzhen & Chen, Qingjuan & Wu, Liangpeng, 2024. "Oil price distortion and its impact on green economic efficiency in China’s transportation: A spatial effect perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Wang, Xiaolei & Bai, Mengqi & Xie, Chunping, 2019. "Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector," Energy Policy, Elsevier, vol. 130(C), pages 320-327.
    5. Juan Tang & Fangming Qin, 2022. "Analyzing the impact of local government competition on green total factor productivity from the factor market distortion perspective: based on the three stage DEA model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14298-14326, December.
    6. Maogang Tang & Silu Cheng & Wenqing Guo & Weibiao Ma & Fengxia Hu, 2023. "Relationship between carbon emission trading schemes and companies’ total factor productivity: evidence from listed companies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11735-11767, October.
    7. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    8. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
    9. Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
    10. Gao, Kang & Yuan, Yijun, 2022. "Does market-oriented reform make the industrial sector “Greener” in China? Fresh evidence from the perspective of capital-labor-energy market distortions," Energy, Elsevier, vol. 254(PA).
    11. Qiao, Sen & Zhao, Dong Hao & Guo, Zi Xin & Tao, Zhang, 2022. "Factor price distortions, environmental regulation and innovation efficiency: An empirical study on China's power enterprises," Energy Policy, Elsevier, vol. 164(C).
    12. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    13. Mian Yang & Yining Yuan & Fuxia Yang & Dalia Patino-Echeverri, 2021. "Effects of environmental regulation on firm entry and exit and China’s industrial productivity: a new perspective on the Porter Hypothesis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 915-944, October.
    14. Li, Weiping & Chen, Xiaoqi & Huang, Jiashun & Gong, Xu & Wu, Wei, 2022. "Do environmental regulations affect firm's cash holdings? Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 112(C).
    15. Sun, Chuanwang & Tie, Ying & Yu, Lili, 2024. "How to achieve both environmental protection and firm performance improvement: Based on China's carbon emissions trading (CET) policy," Energy Economics, Elsevier, vol. 130(C).
    16. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    17. Themann, Michael & Koch, Nicolas, 2021. "Catching up and falling behind: Cross-country evidence on the impact of the EU ETS on firm productivity," Ruhr Economic Papers 904, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    18. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    19. Wang, Xiaolei & Deng, Renxin & Yang, Yufang, 2023. "The spatiotemporal effect of factor price distortion on capacity utilization in China’s iron and steel industry," Resources Policy, Elsevier, vol. 86(PA).
    20. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9351-:d:1508262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.