IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9095-d1502868.html
   My bibliography  Save this article

Application of PV on Commercial Building Facades: An Investigation into the Impact of Architectural and Structural Features

Author

Listed:
  • Belal Ghaleb

    (Architectural Engineering and Construction Management, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Muhammad Imran Khan

    (Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar 34218, Saudi Arabia)

  • Muhammad Asif

    (Architectural Engineering and Construction Management, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    IRC for Sustainable Energy Systems, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

The rapid global transition toward renewable energy necessitates innovative solar PV deployment strategies beyond conventional roof installations. In this context, commercial building facades represent an expansive yet underutilized resource for solar energy harvesting in urban areas. However, existing studies on commercial rooftop solar PV predominantly focus on European contexts, neglecting the unique design constraints and performance trade-offs present in regions such as the Middle East. This study addresses this gap by specifically investigating the impact of architectural and structural features on the utilizable facade area for PV deployment in commercial buildings within the hot desert climate of Saudi Arabia. Detailed case studies of twelve representative buildings are conducted, combining architectural drawing analysis, on-site measurements, and stakeholder surveys. The methodology identified sixteen parameters across three categories—facade functionality, orientation suitability, and surrounding obstructions—that impose technical and non-technical restrictions on photovoltaic integration 3D modeling, and irradiance simulations revealed that, on average, just 31% of the total vertical facade area remained suitable for PV systems after accounting for the diverse architectural and contextual limitations. The study considered 698 kWh/m 2 of solar irradiance as the minimum threshold for PV integration. Shopping malls displayed the lowest utilizability, with near-zero potential, as extensive opaque construction, brand signage, and shading diminish viability. Offices exhibited the highest utilizability of 36%, owing to glazed facades and unobstructed surroundings. Hotels and hospitals presented intermediate potential. Overall, the average facade utilizability factor across buildings was a mere 16%, highlighting the significant hurdles imposed by contemporary envelope configurations. Orientation unsuitability further eliminated 12% of the initially viable area. Surrounding shading contributed an additional 0.92% loss. The results quantify the sensitivity of facades to aspects such as material choices, geometric complexity, building form, and urban context. While posing challenges, the building facade resource holds immense untapped potential for solar-based urban renewal. The study highlights the need for early architectural integration, facade-specific PV product development, and urban planning interventions to maximize the renewable energy potential of commercial facades as our cities rapidly evolve into smart solar energy landscapes.

Suggested Citation

  • Belal Ghaleb & Muhammad Imran Khan & Muhammad Asif, 2024. "Application of PV on Commercial Building Facades: An Investigation into the Impact of Architectural and Structural Features," Sustainability, MDPI, vol. 16(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9095-:d:1502868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radmehr, Mehrshad & Willis, Ken & Kenechi, Ugo Elinwa, 2014. "A framework for evaluating WTP for BIPV in residential housing design in developing countries: A case study of North Cyprus," Energy Policy, Elsevier, vol. 70(C), pages 207-216.
    2. Ghaleb, Belal & Asif, Muhammad, 2022. "Assessment of solar PV potential in commercial buildings," Renewable Energy, Elsevier, vol. 187(C), pages 618-630.
    3. Muhammad Imran Khan & Dana I. Al Huneidi & Faisal Asfand & Sami G. Al-Ghamdi, 2023. "Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zhiling & Zhuang, Zhan & Tan, Hongjun & Liu, Zhengguang & Li, Peiran & Lin, Zhengyuan & Shang, Wen-Long & Zhang, Haoran & Yan, Jinyue, 2023. "Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets," Renewable Energy, Elsevier, vol. 219(P1).
    2. Xintao Li & Xue’er Xu & Diyi Liu & Mengqiao Han & Siqi Li, 2022. "Consumers’ Willingness to Pay for the Solar Photovoltaic System in the Post-Subsidy Era: A Comparative Analysis under an Urban-Rural Divide," Energies, MDPI, vol. 15(23), pages 1-22, November.
    3. Guan, Bowen & Yang, Haobo & Zhang, Tao & Liu, Xiaohua & Wang, Xinke, 2024. "Technoeconomic analysis of rooftop PV system in elevated metro station for cost-effective operation and clean electrification," Renewable Energy, Elsevier, vol. 226(C).
    4. Youssef Kassem & Hüseyin Çamur & Salman Mohammed Awadh Alhuoti, 2020. "Solar Energy Technology for Northern Cyprus: Assessment, Statistical Analysis, and Feasibility Study," Energies, MDPI, vol. 13(4), pages 1-29, February.
    5. Ye, Anqi & Guan, Bowen & Liu, Xiaohua & Zhang, Tao, 2023. "Using solar energy to achieve near-zero energy buildings in Tibetan Plateau," Renewable Energy, Elsevier, vol. 218(C).
    6. Xingyu Zhu & Yuexia Lv & Jinpeng Bi & Mingkun Jiang & Yancai Su & Tingting Du, 2023. "Techno-Economic Analysis of Rooftop Photovoltaic System under Different Scenarios in China University Campuses," Energies, MDPI, vol. 16(7), pages 1-18, March.
    7. Zhenqiang Han & Weidong Zhou & Aimin Sha & Liqun Hu & Runjie Wei, 2023. "Assessing the Photovoltaic Power Generation Potential of Highway Slopes," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    8. Bai, Bo & Xiong, Siqin & Ma, Xiaoming & Liao, Xiawei, 2024. "Assessment of floating solar photovoltaic potential in China," Renewable Energy, Elsevier, vol. 220(C).
    9. Ayman Al-Quraan & Mohammed Al-Mahmodi & Khaled Alzaareer & Claude El-Bayeh & Ursula Eicker, 2022. "Minimizing the Utilized Area of PV Systems by Generating the Optimal Inter-Row Spacing Factor," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    10. Ugochukwu Kenechi Elinwa & Mehrshad Radmehr & John Emmanuel Ogbeba, 2017. "Alternative Energy Solutions Using BIPV in Apartment Buildings of Developing Countries: A Case Study of North Cyprus," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    11. M. Mobeen Shaukat & Muhammad Luqman & Muhammad Asif & S. Z. Shuja & Mohammed Qannan, 2024. "A Theoretical Framework to Promote LCA in the Construction Industry of Saudi Arabia," Sustainability, MDPI, vol. 16(9), pages 1-13, April.
    12. Salah Ud-Din Khan & Irfan Wazeer & Zeyad Almutairi, 2023. "Comparative Analysis of SAM and RETScreen Tools for the Case Study of 600 kW Solar PV System Installation in Riyadh, Saudi Arabia," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    13. Youssef Kassem & Hüseyin Gökçekuş & Ali Güvensoy, 2021. "Techno-Economic Feasibility of Grid-Connected Solar PV System at Near East University Hospital, Northern Cyprus," Energies, MDPI, vol. 14(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9095-:d:1502868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.