IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8676-d1494205.html
   My bibliography  Save this article

Simulation and Analysis of Factors Influencing Climate Adaptability and Strategic Application in Traditional Courtyard Residences in Hot-Summer and Cold-Winter Regions: A Case Study of Xuzhou, China

Author

Listed:
  • Minghao Zhang

    (School of Architecture and Design, China University of Mining and Technology, Daxue Road No.1, Xuzhou 221116, China)

  • Zhezhe Fang

    (School of Architecture and Design, China University of Mining and Technology, Daxue Road No.1, Xuzhou 221116, China)

  • Qian Liu

    (School of Architecture and Design, China University of Mining and Technology, Daxue Road No.1, Xuzhou 221116, China)

  • Fangyu Zhang

    (Nanjing Construction Design Research Institute Co., Ltd., Nanjing 130011, China)

Abstract

Residential buildings consume significant amounts of energy worldwide. Traditional courtyard houses have substantial energy-saving potential due to their low energy consumption and high climate adaptability, which has heightened interest in their climate-responsive design. In recent years, extensive research on traditional houses has been conducted in China, indicating significant variations in energy performances among traditional courtyards within hot-summer and cold-winter climate zones. Therefore, this study, based on research conducted on traditional courtyard houses in the Xuzhou area and utilizing Ecotect and Phoenics ecotechnology software for simulation analysis, comparatively examines the factors influencing energy consumption to assess the energy-saving potential of these houses in hot-summer and cold-winter climate zones. Research has indicated that when traditional Xuzhou courtyard houses meet certain criteria—including an orientation of 20° east of south for the main building, width-to-depth ratio of 2:1, roof slope of 35°, courtyard width-to-depth ratio of 1.7:1, use of branch pick windows, building height of 4.5 m, and a specific window-to-wall ratio—they achieve optimal climate adaptability. This study proposes dimensions for traditional residential buildings suited to the Xuzhou climate and explores their practical application, providing targeted optimization and retrofitting suggestions to support sustainable architectural and ecological development.

Suggested Citation

  • Minghao Zhang & Zhezhe Fang & Qian Liu & Fangyu Zhang, 2024. "Simulation and Analysis of Factors Influencing Climate Adaptability and Strategic Application in Traditional Courtyard Residences in Hot-Summer and Cold-Winter Regions: A Case Study of Xuzhou, China," Sustainability, MDPI, vol. 16(19), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8676-:d:1494205
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    2. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    3. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    5. Chen, Ruijun & Tsay, Yaw-Shyan & Zhang, Ting, 2023. "A multi-objective optimization strategy for building carbon emission from the whole life cycle perspective," Energy, Elsevier, vol. 262(PA).
    6. Abir Khechiba & Djamila Djaghrouri & Moussadek Benabbas & Francesco Leccese & Michele Rocca & Giacomo Salvadori, 2023. "Balancing Thermal Comfort and Energy Consumption in Residential Buildings of Desert Areas: Impact of Passive Strategies," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    7. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    9. Xiaoliang Wang & Bo Lei & Haiquan Bi & Tao Yu, 2019. "Study on the Thermal Performance of a Hybrid Heat Collecting Facade Used for Passive Solar Buildings in Cold Region," Energies, MDPI, vol. 12(6), pages 1-22, March.
    10. Staszczuk, Anna & Kuczyński, Tadeusz, 2021. "The impact of wall and roof material on the summer thermal performance of building in a temperate climate," Energy, Elsevier, vol. 228(C).
    11. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    12. Minghao Zhang & Fang Liu & Qian Liu & Fangyu Zhang & Tingshen Li, 2024. "Climate Adaptation Analysis and Comfort Optimization Strategies for Traditional Residential Buildings in Hot-Summer, Cold-Winter Regions: A Case Study in Xuzhou, China," Sustainability, MDPI, vol. 16(8), pages 1-34, April.
    13. Mehmood, Sajid & Lizana, Jesus & Núñez-Peiró, Miguel & Maximov, Serguey A. & Friedrich, Daniel, 2022. "Resilient cooling pathway for extremely hot climates in southern Asia," Applied Energy, Elsevier, vol. 325(C).
    14. Mehrdad Rabani & Habtamu Bayera Madessa & Natasa Nord, 2021. "Building Retrofitting through Coupling of Building Energy Simulation-Optimization Tool with CFD and Daylight Programs," Energies, MDPI, vol. 14(8), pages 1-23, April.
    15. Li, Hong Xian & Li, Yan & Jiang, Boya & Zhang, Limao & Wu, Xianguo & Lin, Jingyi, 2020. "Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1414-1423.
    16. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    17. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    18. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    19. Staszczuk, A. & Kuczyński, T., 2019. "The impact of floor thermal capacity on air temperature and energy consumption in buildings in temperate climate," Energy, Elsevier, vol. 181(C), pages 908-915.
    20. Belinda López-Mesa & Marta Monzón-Chavarrías & Almudena Espinosa-Fernández, 2020. "Energy Retrofit of Social Housing with Cultural Value in Spain: Analysis of Strategies Conserving the Original Image vs. Coordinating Its Modification," Sustainability, MDPI, vol. 12(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8676-:d:1494205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.