IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8612-d1492034.html
   My bibliography  Save this article

The Role of Biopolymers on the Water Retention Capacity of Stabilized Sand

Author

Listed:
  • Ahmed M. Al-Mahbashi

    (Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Abdullah Almajed

    (Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

The application of biopolymers for sand stabilization has recently gained attention due to their natural composition, which makes them both environmentally friendly and of reasonable cost. Measuring the soil–water retention curve (SWRC) of biopolymers-treated sand is essential for the design, modeling, and interpretation of the unsaturated behavior of these materials. Unsaturated shear strength, unsaturated flow, and associated retention capacity are well addressed and evaluated using SWRC. Therefore, this study examined the possible effects of biopolymers—sodium alginate (SA), guar gum (GG), and pectin (P) on the SWRC and retention capacity for stabilized sand. Apart from natural sand, three different concentrations were investigated for each biopolymer. The SWRCs were measured over the entire practical range of suction using a combination of three techniques: hanging column for low suction measurement, axis translation techniques for moderate suction measurement, and vapor equilibrium technique for high suction measurement. The results indicate significant changes in SWRC, and a new series of micropores was developed, this, in turn, extends the desaturation zone of treated sand from a low suction range (i.e., 30 kPa) to moderate to high suction levels (i.e., 10,000 kPa). The saturated water content ( w s ) was slightly reduced, air entry values (AEVs), and residual suction ( s r ) significantly increased and multiplied up to 200 and 75 times respectively. The retention capacity increased, exhibiting a dependency between the biopolymer type and suction range. The results are of great significance for both practitioner engineers and researchers in predicting the unsaturated soil functions of treated sand.

Suggested Citation

  • Ahmed M. Al-Mahbashi & Abdullah Almajed, 2024. "The Role of Biopolymers on the Water Retention Capacity of Stabilized Sand," Sustainability, MDPI, vol. 16(19), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8612-:d:1492034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8612/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8612-:d:1492034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.