MSCL-Attention: A Multi-Scale Convolutional Long Short-Term Memory (LSTM) Attention Network for Predicting CO 2 Emissions from Vehicles
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Abdullah H. Al-Nefaie & Theyazn H. H. Aldhyani, 2023. "Predicting CO 2 Emissions from Traffic Vehicles for Sustainable and Smart Environment Using a Deep Learning Model," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
- Yuhong Zhao & Ruirui Liu & Zhansheng Liu & Liang Liu & Jingjing Wang & Wenxiang Liu, 2023. "A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shuohua Zhang & Hanning Dong & Can Lu & Wei Li, 2023. "Carbon Emission Projection and Carbon Quota Allocation in the Beijing–Tianjin–Hebei Region of China under Carbon Neutrality Vision," Sustainability, MDPI, vol. 15(21), pages 1-29, October.
- Xiaoxu Guo & Ruibing Kou & Xiang He, 2024. "Towards Carbon Neutrality: Machine Learning Analysis of Vehicle Emissions in Canada," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
- Wanru Yang & Long Chen & Tong Ke & Huan He & Dehu Li & Kai Liu & Huiming Li, 2024. "Carbon Emission Trend Prediction for Regional Cities in Jiangsu Province Based on the Random Forest Model," Sustainability, MDPI, vol. 16(23), pages 1-17, November.
More about this item
Keywords
transportation industry; CO 2 emissions; MSCL-Attention model; prediction tasks; climate change;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8547-:d:1490371. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.