IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8156-d1480680.html
   My bibliography  Save this article

Enhancing Daylight Comfort with Climate-Responsive Kinetic Shading: A Simulation and Experimental Study of a Horizontal Fin System

Author

Listed:
  • Marcin Brzezicki

    (Faculty of Architecture, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

This study employs both simulation and experimental methodologies to evaluate the effectiveness of bi-sectional horizontal kinetic shading systems (KSS) with horizontal fins in enhancing daylight comfort across various climates. It emphasizes the importance of optimizing daylight levels while minimizing solar heat gain, particularly in the context of increasing energy demands and shifting climatic patterns. The study introduces a custom-designed bi-sectional KSS, simulated in three distinct climates—Wroclaw, Tehran, and Bangkok—using climate-based daylight modeling methods with the Ladybug and Honeybee tools in Rhino v.7 software. Standard daylight metrics, such as Useful Daylight Illuminance (UDI) and Daylight Glare Probability (DGP), were employed alongside custom metrics tailored to capture the unique dynamics of the bi-sectional KSS. The results were statistically analyzed using box plots and histograms, revealing UDI 300–3000 medians of 78.51%, 88.96%, and 86.22% for Wroclaw, Tehran, and Bangkok, respectively. These findings demonstrate the KSS’s effectiveness in providing optimal daylight conditions across diverse climatic regions. Annual simulations based on standardized weather data showed that the KSS improved visual comfort by 61.04%, 148.60%, and 88.55%, respectively, compared to a scenario without any shading, and by 31.96%, 54.69%, and 37.05%, respectively, compared to a scenario with open static horizontal fins. The inclusion of KSS switching schedules, often overlooked in similar research, enhances the reproducibility and clarity of the findings. A physical reduced-scale mock-up of the bi-sectional KSS was then tested under real-weather conditions in Wroclaw (latitude 51° N) during June–July 2024. The mock-up consisted of two Chambers ‘1’ and ‘2’ equipped with the bi-sectional KSS prototype, and the other one without shading. Stepper motors managed the fins’ operation via a Python script on a Raspberry Pi 3 minicomputer. The control Chamber ‘1’ provided a baseline for comparing the KSS’s efficiency. Experimental results supported the simulations, demonstrating the KSS’s robustness in reducing high illuminance levels, with illuminance below 3000 lx maintained for 68% of the time during the experiment (conducted from 1 to 4 PM on three analysis days). While UDI and DA calculations were not feasible due to the limited number of sensors, the E h1 values enabled the evaluation of the time illuminance to remain below the threshold. However, during the June–July 2024 heat waves, illuminance levels briefly exceeded the comfort threshold, reaching 4674 lx. Quantitative and qualitative analyses advocate for the broader application and further development of KSS as a climate-responsive shading system in various architectural contexts.

Suggested Citation

  • Marcin Brzezicki, 2024. "Enhancing Daylight Comfort with Climate-Responsive Kinetic Shading: A Simulation and Experimental Study of a Horizontal Fin System," Sustainability, MDPI, vol. 16(18), pages 1-34, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8156-:d:1480680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beata Hysa & Anna Mularczyk, 2024. "PESTEL Analysis of the Photovoltaic Market in Poland—A Systematic Review of Opportunities and Threats," Resources, MDPI, vol. 13(10), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8156-:d:1480680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.