Author
Listed:
- Wei Xu
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Lei Liao
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Dongliang Liao
(College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China)
- Fuli Li
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Aimiao Qin
(College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China)
- Shengpeng Mo
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Xiaobin Zhou
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Yinming Fan
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
Abstract
The distributional characteristics of microorganisms in karst cave ecosystems have been widely studied. However, in such a dark, humid, and oligotrophic habitat, studies on the differences in carbon-sequestering bacteria in multiple habitats are limited. Therefore, to learn the distribution characteristics of carbon-sequestering colonies in cave habitats and their correlation with habitat factors (e.g., pH, Ca 2+ , Mg 2+ , etc.), samples from five cave habitats (weathered rock walls, underground river water, drips, sediments, and air) were collected from the twilight and dark zones of Shiziyan Cave (CO 2 concentration 5385 ppm). The results of high-throughput sequencing and statistical analyses showed that there were significant differences in the distribution of communities in different habitats, with higher abundance in sediments habitat and underground river water habitat, and the dominant phyla of Pseudomonadota (30.53%) and Cyanobacteria (75.11%) in these two habitats. The microbial diversity of the carbon-sequestering microbial community was higher in sediments than in underground river water. The pH, and Ca 2+ , SO 4 2 − , and NO 3 − concentrations can alter the diversity of carbon-sequestering microbes, thereby affecting carbon cycling in caves. Carbon metabolism analyses suggest that microbes in the habitat can cooperate and coexist by participating in different carbon metabolic pathways. These results expanded our understanding of carbon-sequestering microbial communities in cave systems and their responses to the environment.
Suggested Citation
Wei Xu & Lei Liao & Dongliang Liao & Fuli Li & Aimiao Qin & Shengpeng Mo & Xiaobin Zhou & Yinming Fan, 2024.
"Distribution of Carbon-Sequestering Microbes in Different Habitats and the Interaction with Habitat Factors in a Natural Karst Cave,"
Sustainability, MDPI, vol. 16(17), pages 1-17, August.
Handle:
RePEc:gam:jsusta:v:16:y:2024:i:17:p:7357-:d:1464751
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7357-:d:1464751. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.