IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7112-d1459341.html
   My bibliography  Save this article

Anticipatory Technoeconomic Evaluation of Kentucky Bluegrass-Based Perennial Groundcover Implementations in Large-Scale Midwestern US Corn Production Systems

Author

Listed:
  • Cynthia A. Bartel

    (Department of Agronomy, Iowa State University, Ames, IA 50011, USA)

  • Keri L. Jacobs

    (Department of Agricultural and Applied Economics, University of Missouri-Columbia, Columbia, MO 65211, USA)

  • Kenneth J. Moore

    (Department of Agronomy, Iowa State University, Ames, IA 50011, USA)

  • D. Raj Raman

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

Abstract

Perennial groundcover (PGC) has promise as a scalable approach to generating natural resource benefits and sustainable biofuel feedstock while preserving the high yields of annual row crop production. Partnering row crops with temporally and spatially complementary low-growing, shallow-rooted perennials, such as Kentucky bluegrass (KBG) ( Poa pratensis L.), is one example of an emerging PGC system. PGC’s ecosystem benefits can only be fully realized if commercial-scale adoption occurs, which hinges on its economic feasibility. This paper utilizes an enterprise budget framework to detail and compare the expected cost and revenue of establishing and maintaining PGC in row crop systems with standard continuous corn (SCC) ( Zea mays L.) production, including stover harvest, but excluding economic incentives for ecosystem services. Optimistic and pessimistic assumptions were used, along with Monte Carlo simulation, to characterize the uncertainty in results. In the optimistic stover market scenario, Year 1 net returns for PGC averaged USD 84/ac less than for SCC; Year 2+ net returns averaged USD 83/ac more, meaning that cost parity with SCC occurs by the second PGC system year. Without stover revenue, parity is achieved after five years. These results affirm that PGC’s economic viability is critically impacted by a groundcover’s lifespan, the yield parity with SCC, and the availability of a stover market.

Suggested Citation

  • Cynthia A. Bartel & Keri L. Jacobs & Kenneth J. Moore & D. Raj Raman, 2024. "Anticipatory Technoeconomic Evaluation of Kentucky Bluegrass-Based Perennial Groundcover Implementations in Large-Scale Midwestern US Corn Production Systems," Sustainability, MDPI, vol. 16(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7112-:d:1459341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    2. Marra, Michele C. & Carlson, Gerald A., 1987. "The Role Of Farm Size And Resource Constraints In The Choice Between Risky Technologies," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 12(2), pages 1-10, December.
    3. Fiechter, Chad & Ifft, Jennifer, 2019. "Seed Corn Costs: How Large Are the Discounts?," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 9(190), October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    2. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    3. Bruno Lanz & Simon Dietz & Tim Swanson, 2016. "Economic growth and agricultural land conversion under uncertain productivity improvements in agriculture," GRI Working Papers 240, Grantham Research Institute on Climate Change and the Environment.
    4. H. Charles J. Godfray & Sherman Robinson, 2015. "Contrasting approaches to projecting long-run global food security," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 31(1), pages 26-44.
    5. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    6. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    7. Creamer, Bernado & Enahoro, Dolapo & Kleinwechter, Ulrich & Gbegbelegbe, Sika & Hareau, Guy & Swamikannu, Nedumaran & Nelgen, Signe & Telleria, Roberto & Wiebe, Keith, 2015. "Interpreting results from using bio-economic modeling for global and regional ex ante impact assessment," 2015 Conference, August 9-14, 2015, Milan, Italy 211648, International Association of Agricultural Economists.
    8. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    9. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    10. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    11. Neubauer, Florian & Wall, Alan & Njuki, Eric & Bravo-Ureta, Boris, 2023. "Climatic Effects and Farming Performance: An Overview of Selected Studies," 2023 Inter-Conference Symposium, April 19-21, 2023, Montevideo, Uruguay 338540, International Association of Agricultural Economists.
    12. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    13. [WEF] World Economic Forum, 2016. "The Global Risks Report 2016: 11th Edition," Working Papers id:10737, eSocialSciences.
    14. Soheil Shayegh & Johannes Emmerling & Massimo Tavoni, 2022. "International Migration Projections across Skill Levels in the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    15. Ufer, Danielle J. & Ortega, David L. & Wolf, Christopher A. & McKendree, Melissa & Swanson, Janice, 2022. "Getting past the gatekeeper: Key motivations of dairy farmer intent to adopt animal health and welfare-improving biotechnology," Food Policy, Elsevier, vol. 112(C).
    16. Jose A. Perez‐Mendez & David Roibas & Alan Wall, 2019. "The influence of weather conditions on dairy production," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 165-175, March.
    17. Marra, Michele & Pannell, David J. & Abadi Ghadim, Amir, 2003. "The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve?," Agricultural Systems, Elsevier, vol. 75(2-3), pages 215-234.
    18. Marcos-Martinez, Raymundo & Bryan, Brett A. & Schwabe, Kurt A. & Connor, Jeffery D. & Law, Elizabeth A. & Nolan, Martin & Sánchez, José J., 2019. "Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change," Ecosystem Services, Elsevier, vol. 37(C), pages 1-1.
    19. Korir, Josphat Kiplang'at, 2016. "Factors Influencing Intensity Of Adoption Of Integrated Pest Management Package And Pesticide Misuse In The Control Of Mango Fruit Fly In Embu East Sub-County, Kenya," Research Theses 276445, Collaborative Masters Program in Agricultural and Applied Economics.
    20. Xiaolin Ren & Matthias Weitzel & Brian C. O’Neill & Peter Lawrence & Prasanth Meiyappan & Samuel Levis & Edward J. Balistreri & Michael Dalton, 2018. "Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)," Climatic Change, Springer, vol. 146(3), pages 517-531, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7112-:d:1459341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.