IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6805-d1452580.html
   My bibliography  Save this article

Sustainable Inventory Managements for Non-Instantaneous Deteriorating Items: Preservation Technology and Green Technology Approaches with Advanced Purchase Discounts and Joint Emission Regulations

Author

Listed:
  • Shun-Po Chiu

    (Department of Information Management and Graduate School of Information Management, Vanung University, Chung Li 320313, Taiwan)

  • Jui-Jung Liao

    (Department of Business Administration, Chihlee University of Technology, Banqiao District, New Taipei City 22050, Taiwan)

  • Sung-Lien Kang

    (Department of Information Management, Chihlee University of Technology, Banqiao District, New Taipei City 22050, Taiwan)

  • Hari Mohan Srivastava

    (Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
    Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, Baku AZ1007, Azerbaijan
    Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy)

  • Shy-Der Lin

    (Department of Applied Mathematics and Business Administration, Chung Yuan Christian University, Chung Li 320314, Taiwan)

Abstract

The present article aims to determine the green economic policies of an inventory model for non-instantaneous deteriorating items under practical scenarios. These scenarios involve specific maximum lifetimes for items with deteriorations controllable through investments in preservation technologies, which can affect the period without deterioration. Additionally, carbon is emitted due to energy-related costs, prompting retailers to invest in green technology investments to reduce carbon emissions concurrently under the carbon tax policy and the carbon cap-and-trade policy simultaneously. Meanwhile, when a retailer is required to make a prepayment, the purchase discount policy is contingent on the number of installments offered. This means that the retailer prepays off the entire purchasing cost with a single installment, thereby receiving a maximum percentage of price discount. Otherwise, the retailer prepays a certain fraction of the purchasing cost with multiple installments, and the percentage of the price discount will be contingent on the number of n identical installments. In this context, we present theoretical results for optimal solutions, and a salient algorithm is presented, which is derived from these theoretical findings within a sustainable inventory system. To better illustrate the proposed mathematical problems, several numerical examples are presented, followed by sensitivity analysis for different scenarios.

Suggested Citation

  • Shun-Po Chiu & Jui-Jung Liao & Sung-Lien Kang & Hari Mohan Srivastava & Shy-Der Lin, 2024. "Sustainable Inventory Managements for Non-Instantaneous Deteriorating Items: Preservation Technology and Green Technology Approaches with Advanced Purchase Discounts and Joint Emission Regulations," Sustainability, MDPI, vol. 16(16), pages 1-41, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6805-:d:1452580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haoxuan Yu, 2023. "Mining waste: curb risks to people and the environment," Nature, Nature, vol. 615(7953), pages 586-586, March.
    2. Hua, Guowei & Cheng, T.C.E. & Wang, Shouyang, 2011. "Managing carbon footprints in inventory management," International Journal of Production Economics, Elsevier, vol. 132(2), pages 178-185, August.
    3. Tapan Kumar Datta, 2017. "Effect of Green Technology Investment on a Production-Inventory System with Carbon Tax," Advances in Operations Research, Hindawi, vol. 2017, pages 1-12, December.
    4. Umakanta Mishra & Jacobo Tijerina-Aguilera & Sunil Tiwari & Leopoldo Eduardo Cárdenas-Barrón, 2018. "Retailer’s Joint Ordering, Pricing, and Preservation Technology Investment Policies for a Deteriorating Item under Permissible Delay in Payments," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-14, February.
    5. Chandan Mahato & Gour Chandra Mahata, 2021. "Optimal inventory policies for deteriorating items with expiration date and dynamic demand under two-level trade credit," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 994-1017, December.
    6. Hsu, P.H. & Wee, H.M. & Teng, H.M., 2010. "Preservation technology investment for deteriorating inventory," International Journal of Production Economics, Elsevier, vol. 124(2), pages 388-394, April.
    7. Wu, Kun-Shan & Ouyang, Liang-Yuh & Yang, Chih-Te, 2006. "An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging," International Journal of Production Economics, Elsevier, vol. 101(2), pages 369-384, June.
    8. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Praveendra Singh & Madhu Jain, 2024. "Inventory policy for degrading items under advanced payment with price and memory sensitive demand using metaheuristic techniques," Operational Research, Springer, vol. 24(3), pages 1-34, September.
    2. San-José, Luis A. & Sicilia, Joaquín & Cárdenas-Barrón, Leopoldo Eduardo & González-de-la-Rosa, Manuel, 2024. "A sustainable inventory model for deteriorating items with power demand and full backlogging under a carbon emission tax," International Journal of Production Economics, Elsevier, vol. 268(C).
    3. Dye, Chung-Yuan, 2013. "The effect of preservation technology investment on a non-instantaneous deteriorating inventory model," Omega, Elsevier, vol. 41(5), pages 872-880.
    4. Abu Hashan Md Mashud & Dipa Roy & Yosef Daryanto & Mohd Helmi Ali, 2020. "A Sustainable Inventory Model with Imperfect Products, Deterioration, and Controllable Emissions," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    5. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    6. Falguni Mahato & Mukunda Choudhury & Sudipa Das & Gour Chandra Mahata, 2024. "Optimal pricing and replenishment decisions for non-instantaneous deteriorating items with a fixed lifetime and partial backordering under carbon regulations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21399-21432, August.
    7. Sudarshan Bardhan & Haimanti Pal & Bibhas Chandra Giri, 2019. "Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand," Operational Research, Springer, vol. 19(2), pages 347-368, June.
    8. Sarkar, Biswajit & Sarkar, Sumon, 2013. "Variable deterioration and demand—An inventory model," Economic Modelling, Elsevier, vol. 31(C), pages 548-556.
    9. Li, Guiping & He, Xiuli & Zhou, Jing & Wu, Hao, 2019. "Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items," Omega, Elsevier, vol. 84(C), pages 114-126.
    10. Mukunda Choudhury & Sujit Kumar De & Gour Chandra Mahata, 2023. "A pollution-sensitive multistage production-inventory model for deteriorating items considering expiration date under Stackelberg game approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11847-11884, October.
    11. Dharmendra Yadav & Umesh Chand & Ruchi Goel & Biswajit Sarkar, 2023. "Smart Production System with Random Imperfect Process, Partial Backordering, and Deterioration in an Inflationary Environment," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    12. Reza Maihami & Behrooz Karimi & Seyyed Mohammad Taghi Fatemi Ghomi, 2017. "Effect of two-echelon trade credit on pricing-inventory policy of non-instantaneous deteriorating products with probabilistic demand and deterioration functions," Annals of Operations Research, Springer, vol. 257(1), pages 237-273, October.
    13. Zhang, Jianxiong & Wang, Yu & Lu, Lihao & Tang, Wansheng, 2015. "Optimal dynamic pricing and replenishment cycle for non-instantaneous deterioration items with inventory-level-dependent demand," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 136-145.
    14. M. Palanivel & R. Uthayakumar, 2016. "Two-warehouse inventory model for non-instantaneous deteriorating items with partial backlogging and inflation over a finite time horizon," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 278-302, June.
    15. Avinadav, Tal & Herbon, Avi & Spiegel, Uriel, 2014. "Optimal ordering and pricing policy for demand functions that are separable into price and inventory age," International Journal of Production Economics, Elsevier, vol. 155(C), pages 406-417.
    16. Guowei Liu & Jianxiong Zhang & Wansheng Tang, 2015. "Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand," Annals of Operations Research, Springer, vol. 226(1), pages 397-416, March.
    17. Beullens, Patrick & Ghiami, Yousef, 2022. "Waste reduction in the supply chain of a deteriorating food item – Impact of supply structure on retailer performance," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1017-1034.
    18. R. Udayakumar & K. V. Geetha, 2017. "Economic ordering policy for single item inventory model over finite time horizon," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 734-757, November.
    19. Priyamvada & Prerna Gautam & Aditi Khanna, 2021. "Sustainable production strategies for deteriorating and imperfect quality items with an investment in preservation technology," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 910-918, October.
    20. Shah, Nita H & Soni, Hardik N & Patel, Kamlesh A, 2013. "Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates," Omega, Elsevier, vol. 41(2), pages 421-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6805-:d:1452580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.