IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6479-d1445252.html
   My bibliography  Save this article

Analysis of Social Vulnerability to Earthquake Disasters in Mountainous Areas: A Case Study of Sixteen Cities along the Fault Zone in Sichuan Province, China

Author

Listed:
  • Hao Yin

    (School of Civil Engineering, Architecture, Environment, Xihua University, Chengdu 610039, China)

  • Yong Xiang

    (School of Civil Engineering, Architecture, Environment, Xihua University, Chengdu 610039, China)

  • Yangjuan Lei

    (School of Civil Engineering, Architecture, Environment, Xihua University, Chengdu 610039, China)

  • Jiaojiao Xu

    (School of Civil Engineering, Architecture, Environment, Xihua University, Chengdu 610039, China)

Abstract

Given that most cities in Sichuan Province, China, are located in mountainous areas and are frequently affected by earthquakes, this study selected 16 mountainous cities in Sichuan Province. Based on the “exposure–sensitivity–coping capacity” framework, we constructed a social vulnerability assessment index system for earthquake disasters that aligns with the characteristics of mountainous regions. Weights were determined using the entropy weight–CRITIC method, and the improved TOPSIS method was used to calculate the social vulnerability index (SoVI) of each city for comparative analysis. Additionally, the social vulnerability maps were created using ArcGIS software to explore the spatial distribution characteristics. The study found that among the 16 mountainous cities, there is a noticeable spatial clustering of social vulnerability. Yajiang, Daofu, and Luhuo are identified as high–high clustering areas, while Jiulong, Luding, Shimian, and Hanyuan also exhibit high–high clustering. Kangding, Baoxing, and Wenchuan fall into low–low clustering areas. Additionally, coping capacity is the most significant factor influencing the social vulnerability of mountainous cities. After experiencing high-magnitude earthquakes, most mountainous cities have not improved their coping abilities and continue to exhibit high vulnerability, primarily due to high illiteracy rates, significant altitude variations, and poor economic conditions. This study provides a scientific basis for local governments to formulate disaster prevention and mitigation strategies, which help enhance the disaster resilience of mountainous cities and promote their sustainable development.

Suggested Citation

  • Hao Yin & Yong Xiang & Yangjuan Lei & Jiaojiao Xu, 2024. "Analysis of Social Vulnerability to Earthquake Disasters in Mountainous Areas: A Case Study of Sixteen Cities along the Fault Zone in Sichuan Province, China," Sustainability, MDPI, vol. 16(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6479-:d:1445252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Ge & Wen Dou & Xiaotao Wang & Yi Chen & Ziyuan Zhang, 2021. "Identifying urban–rural differences in social vulnerability to natural hazards: a case study of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2629-2651, September.
    2. Tiodora Siagian & Purhadi Purhadi & Suhartono Suhartono & Hamonangan Ritonga, 2014. "Social vulnerability to natural hazards in Indonesia: driving factors and policy implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1603-1617, January.
    3. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    4. Yang Zhou & Ning Li & Wenxiang Wu & Jidong Wu, 2014. "Assessment of provincial social vulnerability to natural disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2165-2186, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    2. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    3. Yu Duan & Junnan Xiong & Weiming Cheng & Nan Wang & Yi Li & Yufeng He & Jun Liu & Wen He & Gang Yang, 2022. "Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 269-294, January.
    4. Anjum Tasnuva & Md. Riad Hossain & Roquia Salam & Abu Reza Md. Towfiqul Islam & Muhammad Mainuddin Patwary & Sobhy M. Ibrahim, 2021. "Employing social vulnerability index to assess household social vulnerability of natural hazards: an evidence from southwest coastal Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10223-10245, July.
    5. Jundong Hou & Jun Lv & Xin Chen & Shiwei Yu, 2016. "China’s regional social vulnerability to geological disasters: evaluation and spatial characteristics analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 97-111, November.
    6. Feifeng Cao & Huangyuan Wang & Conglin Zhang & Weibo Kong, 2023. "Social Vulnerability Evaluation of Natural Disasters and Its Spatiotemporal Evolution in Zhejiang Province, China," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    7. Xueting Li & Leiwen Jiang, 2024. "Spatial and temporal changes in social vulnerability to natural hazards: a case study for China counties," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11273-11292, September.
    8. Juri Kim & Tae-Hyoung Tommy Gim, 2020. "Assessment of social vulnerability to floods on Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 101-114, May.
    9. Amanullah Mengal & Katsuichiro Goda & Muhammad Ashraf & Ghulam Murtaza, 2021. "Social vulnerability to seismic-tsunami hazards in district Gwadar, Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1159-1181, August.
    10. Yi Ge & Haibo Zhang & Wen Dou & Wenfang Chen & Ning Liu & Yuan Wang & Yulin Shi & Wenxin Rao, 2017. "Mapping Social Vulnerability to Air Pollution: A Case Study of the Yangtze River Delta Region, China," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    11. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    12. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    13. Wenmin Qin & Aiwen Lin & Jian Fang & Lunche Wang & Man Li, 2017. "Spatial and temporal evolution of community resilience to natural hazards in the coastal areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 331-349, October.
    14. Regardt J. Ferreira & Fred Buttell & Clare Cannon, 2020. "COVID-19: Immediate Predictors of Individual Resilience," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    15. Niranjan Padhan & S Madheswaran, 2023. "An integrated assessment of vulnerability to floods in coastal Odisha: a district-level analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2351-2382, February.
    16. Cuong Viet Nguyen & Ralph Horne & John Fien & France Cheong, 2017. "Assessment of social vulnerability to climate change at the local scale: development and application of a Social Vulnerability Index," Climatic Change, Springer, vol. 143(3), pages 355-370, August.
    17. José Francisco León-Cruz & Rocío Castillo-Aja, 2022. "A GIS-based approach for tornado risk assessment in Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1563-1583, November.
    18. Ming Zhang & Wenbo Xiang & Meilan Chen & Zisen Mao, 2018. "Measuring Social Vulnerability to Flood Disasters in China," Sustainability, MDPI, vol. 10(8), pages 1-14, July.
    19. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    20. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6479-:d:1445252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.