IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6114-d1437282.html
   My bibliography  Save this article

Modeling and Monitoring CO 2 Emissions in G20 Countries: A Comparative Analysis of Multiple Statistical Models

Author

Listed:
  • Anwar Hussain

    (Department of Statistics, Quaid-I-Azam University, Islamabad 45320, Pakistan)

  • Firdos Khan

    (Center for Space and Remote Sensing Research (CSRSR), National Central University, Taoyuan 32001, Taiwan
    School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 46000, Pakistan)

  • Olayan Albalawi

    (Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia)

Abstract

The emission of carbon dioxide (CO 2 ) is considered one of the main factors responsible for one of the greatest challenges faced by the world today: climate change. On the other hand, with the increase in energy demand due to the increase in population and industrialization, the emission of CO 2 has increased rapidly in the past few decades. However, the world’s leaders, including the United Nations, are now taking serious action on how to minimize the emission of CO 2 into the atmosphere. Towards this end, accurate modeling and monitoring of historical CO 2 can help in the development of rational policies. This study aims to analyze the carbon emitted by the Group Twenty (G20) countries for the period 1971–2021. The datasets include CO 2 emissions, nonrenewable energy (NREN), renewable energy (REN), Gross Domestic Product (GDP), and Urbanization (URB). Various regression-based models, including multiple linear regression models, quantile regression models, and panel data models with different variants, were used to quantify the influence of independent variables on the response variable. In this study, CO 2 is a response variable, and the other variables are covariates. The ultimate objective was to choose the best model among the competing models. It is noted that the USA, Canada, and Australia produced the highest amount of CO 2 consistently for the entire duration; however, in the last decade (2011–2021) it has decreased to 12.63–17.95 metric tons per capita as compared to the duration of 1971–1980 (14.33–22.16 metric tons per capita). In contrast, CO 2 emissions have increased in Saudi Arabia and China recently. For modeling purposes, the duration of the data has been divided into two independent, equal parts: 1971–1995 and 1996–2021. The panel fixed effect model (PFEM) and panel mixed effect model (PMEM) outperformed the other competing models using model selection and model prediction criteria. Different models provide different insights into the relationship between CO 2 emissions and independent variables. In the later duration, all models show that REN has negative impacts on CO 2 emissions, except the quantile regression model with tau = 0.25. In contrast, NREN has strong positive impacts on CO 2 emissions. URB has significantly negative impacts on CO 2 emissions globally. The findings of this study hold the potential to provide valuable information to policymakers on carbon emissions and monitoring globally. In addition, results can help in addressing some of the sustainable development goals of the United Nation Development Programme.

Suggested Citation

  • Anwar Hussain & Firdos Khan & Olayan Albalawi, 2024. "Modeling and Monitoring CO 2 Emissions in G20 Countries: A Comparative Analysis of Multiple Statistical Models," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6114-:d:1437282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acheampong, Alex O. & Opoku, Eric Evans Osei, 2023. "Environmental degradation and economic growth: Investigating linkages and potential pathways," Energy Economics, Elsevier, vol. 123(C).
    2. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kola Benson Ajeigbe & Fortune Ganda, 2024. "Leveraging Food Security and Environmental Sustainability in Achieving Sustainable Development Goals: Evidence from a Global Perspective," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    2. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    3. Michael Greenstone & Rema Hanna, 2014. "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," American Economic Review, American Economic Association, vol. 104(10), pages 3038-3072, October.
    4. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    5. Pantelis Kalaitzidakis & Theofanis P. Mamuneas & Thanasis Stengos, 2008. "The Contribution of Pollution to Productivity Growth," Working Paper series 06_08, Rimini Centre for Economic Analysis.
    6. Muhammad Shahbaz & Vassilios G. Papavassiliou & Amine Lahiani & David Roubaud, 2023. "Are we moving towards decarbonisation of the global economy? Lessons from the distant past to the present," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2620-2634, July.
    7. Song, Tao & Zheng, Tingguo & Tong, Lianjun, 2008. "An empirical test of the environmental Kuznets curve in China: A panel cointegration approach," China Economic Review, Elsevier, vol. 19(3), pages 381-392, September.
    8. Giedrė Lapinskienė & Kęstutis Peleckis & Neringa Slavinskaitė, 2017. "Energy consumption, economic growth and greenhouse gas emissions in the European Union countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(6), pages 1082-1097, November.
    9. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    10. Paul Welfens & Jens Perret & Deniz Erdem, 2010. "Global economic sustainability indicator: analysis and policy options for the Copenhagen process," International Economics and Economic Policy, Springer, vol. 7(2), pages 153-185, August.
    11. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    12. Lei Gao & Taowu Pei & Jingran Zhang & Yu Tian, 2022. "The “Pollution Halo” Effect of FDI: Evidence from the Chinese Sichuan–Chongqing Urban Agglomeration," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    13. Bradford David F. & Fender Rebecca A & Shore Stephen H. & Wagner Martin, 2005. "The Environmental Kuznets Curve: Exploring a Fresh Specification," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-28, June.
    14. Ghimire, Narishwar & Woodward, Richard T., 2013. "Under- and over-use of pesticides: An international analysis," Ecological Economics, Elsevier, vol. 89(C), pages 73-81.
    15. Yan, Bingqian & Xia, Yan & Jiang, Xuemei, 2023. "Carbon productivity and value-added generations: Regional heterogeneity along global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 111-125.
    16. Elbert Dijkgraaf & Herman Vollebergh, 2005. "A Test for Parameter Homogeneity in CO 2 Panel EKC Estimations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(2), pages 229-239, October.
    17. Yan, Sen & Sun, Xinyu & Zhang, Yurong, 2024. "High-speed railway ripples on the greenness: Insight from urban green vegetation cover," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    18. Esposito, Piero & Patriarca, Fabrizio & Salvati, Luca, 2018. "Tertiarization and land use change: The case of Italy," Economic Modelling, Elsevier, vol. 71(C), pages 80-86.
    19. Rahman, Tauhidur & Mittelhammer, Ron C. & Wandschneider, Philip R., 2011. "Measuring quality of life across countries: A multiple indicators and multiple causes approach," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 40(1), pages 43-52, February.
    20. Herrendorf, Berthold & Rogerson, Richard & Valentinyi, Ákos, 2014. "Growth and Structural Transformation," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 6, pages 855-941, Elsevier.

    More about this item

    Keywords

    CO 2 emission; G20 countries; Box–Cox transformation; spatiotemporal analysis; statistical modeling;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6114-:d:1437282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.