IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p4917-d1411116.html
   My bibliography  Save this article

The Interconnection between Climate Cycles and Geohazards in Urban Areas of the Tourist Island of Mallorca, Spain

Author

Listed:
  • Juan A. Luque-Espinar

    (Geological and Mining Institute of Spain from the National Research Council (IGME_CSIC), Urb Alcázar del Genil, edf. Zulema 4 bajo, 18006 Granada, Spain)

  • Rosa M. Mateos

    (Geological and Mining Institute of Spain from the National Research Council (IGME_CSIC), Urb Alcázar del Genil, edf. Zulema 4 bajo, 18006 Granada, Spain)

  • Roberto Sarro

    (Geological and Mining Institute of Spain from the National Research Council (IGME_CSIC), Ríos Rosas 23, 28003 Madrid, Spain)

  • Cristina Reyes-Carmona

    (Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy)

  • Mónica Martínez-Corbella

    (Geological and Mining Institute of Spain from the National Research Council (IGME_CSIC), Ríos Rosas 23, 28003 Madrid, Spain)

Abstract

The island of Mallorca has experienced major interventions and transformations of the territory, with unprecedented urban development related to growing tourism activity. In this paper, we present a spatio-temporal analysis—by using spectral analysis techniques—of climate cycles on the island of Mallorca (Spain) and their correlation with the occurrences of landslides and flash floods. Both geohazards are closely related to wet periods, which are controlled by different, well-known natural cycles: ENSO, the NAO, sunspot, etc. Geostatistical methods are used to map the distribution of rainfall, as well as a spatial representation of the spectral confidence of the different natural cycles, to define the hazardous areas on the island. The cycles with the greatest influence on rainfall in Mallorca are El Niño–Southern Oscillation (ENSO) (5.6 y and 3.5 y), the North Atlantic Oscillation (NAO) (7.5 y), and Quasi-Biennial Oscillation (QBO). Recorded events of both rockfalls and flash floods exhibit a strong correlation with the climate indices of QBO, ENSO, the NAO, and sunspot activity. This correlation is particularly pronounced with QBO, as this cycle has a higher frequency than the others, and QBO is observed as part of the other cycles in the form of increases and decreases during periods of higher ENSO, NAO, and sunspot values. However, the impact of flash floods is also significant in the southeast part of the island, despite its lower levels of rainfall. The most dangerous episodes are related to ENSO (6.4 y) and the NAO. The validation of the methodology employed is strengthened by incorporating information from the flash flood data, as it offers comprehensive coverage of the entire island, compared to the landslide database, which is confined to the Serra de Tramuntana region. The study reveals that the city of Palma and the municipality of Calvià, as well as the central and eastern urban areas of the island, are the most vulnerable regions to intense rainfall and its consequences.

Suggested Citation

  • Juan A. Luque-Espinar & Rosa M. Mateos & Roberto Sarro & Cristina Reyes-Carmona & Mónica Martínez-Corbella, 2024. "The Interconnection between Climate Cycles and Geohazards in Urban Areas of the Tourist Island of Mallorca, Spain," Sustainability, MDPI, vol. 16(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4917-:d:1411116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/4917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/4917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Antonio Luque-Espinar & Rosa María Mateos & Inmaculada García-Moreno & Eulogio Pardo-Igúzquiza & Gerardo Herrera, 2017. "Spectral analysis of climate cycles to predict rainfall induced landslides in the western Mediterranean (Majorca, Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 985-1007, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Fustos & R. Abarca-del-Rio & P. Moreno-Yaeger & M. Somos-Valenzuela, 2020. "Rainfall-Induced Landslides forecast using local precipitation and global climate indexes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 115-131, May.
    2. Mohammad Taghi Sattari & Fatemeh Shaker Sureh & Ercan Kahya, 2020. "Monthly precipitation assessments in association with atmospheric circulation indices by using tree-based models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1077-1094, July.
    3. Gianluca Mastrantonio & Giovanna Jona Lasinio & Alessio Pollice & Lorenzo Teodonio & Giulia Capotorti, 2022. "A Dirichlet process model for change‐point detection with multivariate bioclimatic data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4917-:d:1411116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.