IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p4902-d1410825.html
   My bibliography  Save this article

Spatio-Temporal Evolution and Drivers of Carbon Emission Efficiency in China’s Iron and Steel Industry

Author

Listed:
  • Rongbang Xu

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

  • Fujie Yang

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

  • Sanmang Wu

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

  • Qinwen Xue

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

Abstract

Improving the carbon emission efficiency (CEE) of the iron and steel industry (ISI) is crucial for China to achieve the goal of carbon peak and carbon neutrality. This study employed the undesirable SBM and Dagum Gini coefficient to measure the ISI’s CEE and analyzed the spatial heterogeneity among three regions of China. This study also used the Tobit model to clarify the influencing factors. The conclusions show that (1) the CEE in eastern provinces is the highest, the central ones rank second, while the western ones rank the worst; the promoting effect of Technical Change is greater than that of Efficiency Change. (2) ISI’s CEE shows a positive spatial correlation and an apparent spatial heterogeneity. The CEE gap between the regions contributes most to the CEE difference among provinces. The regional CEE gap within the western region is the largest, with a maximum difference of 0.520 in the Dagum Gini coefficient. Furthermore, the total CEE gap shows a narrowing trend from 2009 to 2020, with the Dagum Gini coefficient decreasing from 0.414 in 2009 to 0.357 in 2020. (3) Industrial structure, enterprise scale, foreign direct investment, and technology level positively correlate with ISI’s CEE; the marginal impacts are 0.6711, 0.1203, 0.0572, and 3.5191, respectively. While energy intensity, environmental regulation, and product structure negatively correlate with it, the marginal impacts are 0.0178, 1.4673, and 0.2452, respectively.

Suggested Citation

  • Rongbang Xu & Fujie Yang & Sanmang Wu & Qinwen Xue, 2024. "Spatio-Temporal Evolution and Drivers of Carbon Emission Efficiency in China’s Iron and Steel Industry," Sustainability, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4902-:d:1410825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/4902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/4902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tone, Kaoru & Sahoo, Biresh K., 2003. "Scale, indivisibilities and production function in data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 84(2), pages 165-192, May.
    2. Ekkehart Schlicht, 2016. "Directed Technical Change and Capital Deepening: A Reconsideration of Kaldor's Technical Progress Function," Metroeconomica, Wiley Blackwell, vol. 67(1), pages 119-151, February.
    3. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. Huayong Niu & Zhishuo Zhang & Yao Xiao & Manting Luo & Yumeng Chen, 2022. "A Study of Carbon Emission Efficiency in Chinese Provinces Based on a Three-Stage SBM-Undesirable Model and an LSTM Model," IJERPH, MDPI, vol. 19(9), pages 1-19, April.
    6. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    7. Bin PENG, 2017. "Can China’s Pollution-Fighting Efforts Be a Model for Other Developing Countries?," East Asian Policy (EAP), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 96-103, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    2. Yang, Siying & Liu, Fengshuo, 2024. "Impact of industrial intelligence on green total factor productivity: The indispensability of the environmental system," Ecological Economics, Elsevier, vol. 216(C).
    3. Chen, Lifeng & Wang, Kaifeng, 2022. "The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China's cities: Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 110(C).
    4. Pan Rao & Xiaojin Liu & Shubin Zhu & Xiaolan Kang & Xinglei Zhao & Fangting Xie, 2022. "Does the Application of ICTs Improve the Efficiency of Agricultural Carbon Reduction? Evidence from Broadband Adoption in Rural China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    5. Liu, Zuankuo & Xin, Li, 2019. "Has China's Belt and Road Initiative promoted its green total factor productivity?——Evidence from primary provinces along the route," Energy Policy, Elsevier, vol. 129(C), pages 360-369.
    6. Víctor Giménez & Claudio Thieme & Diego Prior & Emili Tortosa-Ausina, 2017. "An international comparison of educational systems: a temporal analysis in presence of bad outputs," Journal of Productivity Analysis, Springer, vol. 47(1), pages 83-101, February.
    7. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    8. Wang, Jianda & Guo, Dongsheng, 2023. "Siphon and radiation effects of ICT agglomeration on green total factor productivity: Evidence from a spatial Durbin model," Energy Economics, Elsevier, vol. 126(C).
    9. Feng Dong & Chang Qin & Xiaoyun Zhang & Xu Zhao & Yuling Pan & Yujin Gao & Jiao Zhu & Yangfan Li, 2021. "Towards Carbon Neutrality: The Impact of Renewable Energy Development on Carbon Emission Efficiency," IJERPH, MDPI, vol. 18(24), pages 1-23, December.
    10. Pan Jiang & Mengyue Li & Yuting Zhao & Xiujuan Gong & Ruifeng Jin & Yuhan Zhang & Xue Li & Liang Liu, 2022. "Does Environmental Regulation Improve Carbon Emission Efficiency? Inspection of Panel Data from Inter-Provincial Provinces in China," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    11. Songping Zhu & Azhong Ye, 2018. "Does the Impact of China’s Outward Foreign Direct Investment on Reverse Green Technology Process Differ across Countries?," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    12. Alan Barrell & Pawel Dobrzanski & Sebastian Bobowski & Krzysztof Siuda & Szymon Chmielowiec, 2021. "Efficiency of Environmental Protection Expenditures in EU Countries," Energies, MDPI, vol. 14(24), pages 1-35, December.
    13. Qingyan Zhu, 2023. "How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    14. Zhang, Fuyu & Wang, Qiang & Li, Rongrong, 2024. "Linking natural resource abundance and green growth: The role of energy transition," Resources Policy, Elsevier, vol. 91(C).
    15. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    16. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    17. Zhao, Mingxuan & Lv, Lianhong & Wu, Jing & Wang, Shen & Zhang, Nan & Bai, Zihan & Luo, Hong, 2022. "Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model," Energy, Elsevier, vol. 251(C).
    18. Michael Greenstone & Rema Hanna, 2014. "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," American Economic Review, American Economic Association, vol. 104(10), pages 3038-3072, October.
    19. Dongqing Han & Dayong Zhang & Peng Yue & Zhengxu Cao, 2024. "Toward Sustainable Development: Can Digital Transformation of Industrial Enterprise Drive Carbon Reduction?," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    20. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4902-:d:1410825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.