IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4792-d1408739.html
   My bibliography  Save this article

Research on Environmental Performance Measurement and Influencing Factors of Key Cities in China Based on Super-Efficiency SBM-Tobit Model

Author

Listed:
  • Lirong Xue

    (Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
    Chinese Academy of Environmental Planning, Beijing 100041, China
    These authors contributed equally to this work.)

  • Aiyu Qu

    (Chinese Academy of Environmental Planning, Beijing 100041, China
    These authors contributed equally to this work.)

  • Xiurui Guo

    (Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China)

  • Chunxu Hao

    (Chinese Academy of Environmental Planning, Beijing 100041, China)

Abstract

In recent years, China has experienced significant economic growth and some degree of environmental pollution control. However, achieving a perfect balance between the environment and economic development remains a challenge. In order to seek solutions to this issue and promote the sustainable development of cities, this paper starts from the urban level, which is relatively lacking in existing research. Based on the panel data of urban indicators from 2013 to 2021, it quantifies the environmental performance of key cities using the slack-based measure (SBM) model of super-efficiency based on a non-expected output. Furthermore, it utilizes the Tobit panel regression model suitable for limited dependent variables to analyze the impact of driving factors on the environmental performance of key cities, and it further explores the reasons for the loss of urban environmental performance from the dual perspectives of inputs and outputs. The research findings indicate the following. (1) The average environmental performance of 30 key cities has shown an increasing trend but has not yet reached a valid state. The cities’ environmental performance rises in the range of [0.444, 0.821], indicating that there is room for improvement in urban environmental management. (2) Cities in the northeastern region of China have lagged behind the eastern, central, and western regions in terms of environmental performance over this nine-year period, and the redundancy of undesirable outputs is partly responsible for this decline. (3) The large proportion of the secondary industry, the number of vehicles on the road, and the population density have a significantly negative impact on urban environmental performance, while the per capita regional GDP and urban maintenance and construction funds make a positive difference. These research findings provide a scientific basis and valuable insights into urban environment performance enhancement and can serve as a reference for areas in need of balanced development between the urban environment and economic growth.

Suggested Citation

  • Lirong Xue & Aiyu Qu & Xiurui Guo & Chunxu Hao, 2024. "Research on Environmental Performance Measurement and Influencing Factors of Key Cities in China Based on Super-Efficiency SBM-Tobit Model," Sustainability, MDPI, vol. 16(11), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4792-:d:1408739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji, Yuhang & Lei, Yalin & Li, Li & Zhang, An & Wu, Sanmang & Li, Qun, 2021. "Evaluation of the implementation effects and the influencing factors of resource tax in China," Resources Policy, Elsevier, vol. 72(C).
    2. Sun, Yu & Yang, Feng & Wang, Dawei & Ang, Sheng, 2023. "Efficiency evaluation for higher education institutions in China considering unbalanced regional development: A meta-frontier Super-SBM model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    4. Toloo, Mehdi & Tone, Kaoru & Izadikhah, Mohammad, 2023. "Selecting slacks-based data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1302-1318.
    5. Rödder, W. & Reucher, E., 2012. "Advanced X-efficiencies for CCR- and BCC-models – towards Peer-based DEA controlling," European Journal of Operational Research, Elsevier, vol. 219(2), pages 467-476.
    6. Koul, Hira L. & Song, Weixing & Liu, Shan, 2014. "Model checking in Tobit regression via nonparametric smoothing," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 36-49.
    7. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeda, Midori & Xie, Jun & Kurita, Kenichi & Managi, Shunsuke, 2024. "Advancing Hospital Sustainability: A Multidimensional Index Integrating ESG and Digital Transformation," MPRA Paper 119930, University Library of Munich, Germany.
    2. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    3. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    4. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    6. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    7. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    8. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Can Zhang & Jixia Li, 2024. "The Impact of Official Promotion Incentives on Urban Ecological Welfare Performance and Its Spatial Effect," Sustainability, MDPI, vol. 16(7), pages 1-29, April.
    10. Muliaman Hadad & Maximilian Hall & Karligash Kenjegalieva & Wimboh Santoso & Richard Simper, 2011. "Banking efficiency and stock market performance: an analysis of listed Indonesian banks," Review of Quantitative Finance and Accounting, Springer, vol. 37(1), pages 1-20, July.
    11. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    12. Jo, Ah-Hyun & Chang, Young-Tae, 2023. "The effect of airport efficiency on air traffic, using DEA and multilateral resistance terms gravity models," Journal of Air Transport Management, Elsevier, vol. 108(C).
    13. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    14. Yi-Chung Hsu, 2014. "Efficiency in government health spending: a super slacks-based model," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(1), pages 111-126, January.
    15. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    16. Chenchen Su & Jinchuan Shen & Fei Wang, 2024. "Can income growth and environmental improvements go hand in hand? An empirical study of Chinese agriculture," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 70(7), pages 321-333.
    17. Fan Wang & Lili Feng & Jin Li & Lin Wang, 2020. "Environmental Regulation, Tenure Length of Officials, and Green Innovation of Enterprises," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    18. Ningyi Liu & Yongyu Wang, 2022. "Urban Agglomeration Ecological Welfare Performance and Spatial Convergence Research in the Yellow River Basin," Land, MDPI, vol. 11(11), pages 1-18, November.
    19. Zhou, Lin & Fan, Jianshuang & Hu, Mingzhi & Yu, Xiaofen, 2024. "Clean air policy and green total factor productivity: Evidence from Chinese prefecture-level cities," Energy Economics, Elsevier, vol. 133(C).
    20. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4792-:d:1408739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.