IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4593-d1404165.html
   My bibliography  Save this article

Practical Use of Materials of Natural Origin as Loose-Fill Insulations in Open-Diffusion Constructions—Observation and Numerical Simulation

Author

Listed:
  • Piotr Kosiński

    (Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Jana Heweliusza 10, 10-724 Olsztyn, Poland)

  • Krystian Patyna

    (Faculty of Civil Engineering and Architecture, Lublin University of Technology, 40 Nadbystrzycka St., 20-618 Lublin, Poland)

Abstract

The increasing requirements concerning the consideration of the environmental impact of building materials, along with the simultaneous preservation and enhancement of building thermal parameters, have led to a surge in interest in insulations based on organic or recycled materials. Despite the growing interest in these materials, there remains a scarcity of scientific studies regarding their hygrothermal properties. Within the scope of the research described in the text, the insulation properties of loose-fill materials (hemp shives, cellulose fibers, loose wood wool, and mineral wool as a reference) in wooden frame walls were analyzed. The authors simulated walls with the same U value filled with these materials using Delphin 6.1 software. The simulation time was 3 years, considering the appropriate climatic conditions of Olsztyn and different microclimatic conditions inside the rooms. Insulations made of natural organic can absorb and reveal moisture to the internal environment, while mineral wool transports the moisture to the outside, which may cause condensation problems. Insulations made of hemp shives or wood wool do not increase the level of accumulated moisture over time, which results in thermal stability. In contrast, cellulose and mineral wool store more moisture, which in wet conditions increases the heat flux by 6.9% and 5.2%, respectively.

Suggested Citation

  • Piotr Kosiński & Krystian Patyna, 2024. "Practical Use of Materials of Natural Origin as Loose-Fill Insulations in Open-Diffusion Constructions—Observation and Numerical Simulation," Sustainability, MDPI, vol. 16(11), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4593-:d:1404165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Kosiński & Przemysław Brzyski & Maria Tunkiewicz & Zbigniew Suchorab & Damian Wiśniewski & Paweł Palczyński, 2022. "Thermal Properties of Hemp Shives Used as Insulation Material in Construction Industry," Energies, MDPI, vol. 15(7), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przemysław Brzyski & Magdalena Grudzińska & Martin Böhm & Grzegorz Łagód, 2022. "Energy Simulations of a Building Insulated with a Hemp-Lime Composite with Different Wall and Node Variants," Energies, MDPI, vol. 15(20), pages 1-16, October.
    2. Ajabli, Houda & Zoubir, Amine & Elotmani, Rabie & Louzazni, Mohamed & Kandoussi, Khalid & Daya, Abdelmajid, 2023. "Review on Eco-friendly insulation material used for indoor comfort in building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Michał Kubiś & Piotr Łapka & Łukasz Cieślikiewicz & Genadijs Sahmenko & Maris Sinka & Diana Bajare, 2022. "Analysis of the Thermal Conductivity of a Bio-Based Composite Made of Hemp Shives and a Magnesium Binder," Energies, MDPI, vol. 15(15), pages 1-11, July.
    4. Magdalena Grudzińska & Krystian Patyna & Wojciech Jabłoński & Przemysław Brzyski, 2024. "Thermal Transmittance in Roof–Wall Structural Junction Areas Insulated with a Hemp–Lime Mixture," Energies, MDPI, vol. 17(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4593-:d:1404165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.