IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4394-d1399757.html
   My bibliography  Save this article

Persistent Vulnerability after Disaster Risk Reduction (DRR) Response: The Case of Salgar, Colombia

Author

Listed:
  • Paula Andrea Valencia Londoño

    (Faculty of Social and Human Sciences, Universidad de Medellín, Medellín 050026, Colombia)

  • Diana Valencia Londoño

    (Faculty of Integrated Arts, Universidad de San Buenaventura, Medellín 050010, Colombia)

Abstract

Community-based disaster management (CBDM) has replaced traditional models of disaster risk reduction (DRR), giving the community a more participatory role in the planning and implementation of risk mitigation and preparedness strategies, disaster response, and post-disaster recovery measures. This shift in disaster response approaches has impacted understandings of vulnerability and resilience, leading scholars and policy makers to move away from a physical definition of vulnerability and to incorporate social variables. However, in Colombia, a traditional DRR approach still prevails. The National Risk Management Policy employs a top-down approach to risk reduction and disaster management, relying on the action of governmental authorities without community participation in the design or implementation of risk management planning and strategy. This article reveals the deficiencies of traditional DRR approaches. The Colombian government’s post-disaster resettlement project after a 2015 landslide in Salgar, Antioquia that resulted in 98 people dead or missing did not contribute to the reduction of vulnerability for the resettled community. To accurately measure post-disaster vulnerability and resilience, a new holistic model of indicators that includes both social and biophysical variables that illustrate and measure the relevance of preexisting vulnerabilities was developed. Local data was collected through 178 surveys administered to the inhabitants of Salgar’s three post-disaster resettlement sectors—La Habana, La Florida, and Las Margaritas—to construct an accurate picture of the populations affected by the disaster. Our results show that in the case of Salgar, social vulnerabilities persist even in the physical components of the resettlement sites where new infrastructure would be expected to reduce hazardous conditions and exposure to risk.

Suggested Citation

  • Paula Andrea Valencia Londoño & Diana Valencia Londoño, 2024. "Persistent Vulnerability after Disaster Risk Reduction (DRR) Response: The Case of Salgar, Colombia," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4394-:d:1399757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    2. Mahed-Ul-Islam Choudhury & M. Salim Uddin & C. Emdad Haque, 2019. "“Nature brings us extreme events, some people cause us prolonged sufferings”: the role of good governance in building community resilience to natural disasters in Bangladesh," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(10), pages 1761-1781, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    2. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    3. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    4. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    5. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    6. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    7. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    8. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    9. Yi Gu & Jinyu Sun & Jianming Cai & Yanwen Xie & Jiahao Guo, 2024. "Urban Planning Perspective on Food Resilience Assessment and Practice in the Zhengzhou Metropolitan Area, China," Land, MDPI, vol. 13(10), pages 1-27, October.
    10. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    11. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    12. Rio Yonson & Ilan Noy & JC Gaillard, 2018. "The measurement of disaster risk: An example from tropical cyclones in the Philippines," Review of Development Economics, Wiley Blackwell, vol. 22(2), pages 736-765, May.
    13. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    14. Muhammad Suhail Rizwan & Asifa Obaid & Dawood Ashraf, 2017. "The Impact of Corporate Social Responsibility on Default Risk: Empirical evidence from US Firms," Business & Economic Review, Institute of Management Sciences, Peshawar, Pakistan, vol. 9(3), pages 36-70, September.
    15. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    16. Abdollahzadeh, Gholamhossein & Sharifzadeh, Mohammad Sharif & Sklenička, Petr & Azadi, Hossein, 2023. "Adaptive capacity of farming systems to climate change in Iran: Application of composite index approach," Agricultural Systems, Elsevier, vol. 204(C).
    17. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    18. Maximiliano Oportus & Rodrigo Cienfuegos & Alejandro Urrutia & Rafael Aránguiz & Patricio A. Catalán & Matías A. Hube, 2020. "Ex post analysis of engineered tsunami mitigation measures in the town of Dichato, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 367-406, August.
    19. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    20. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4394-:d:1399757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.