IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4274-d1397474.html
   My bibliography  Save this article

Scenario Analysis of CO 2 Reduction Potentials from a Carbon Neutral Perspective

Author

Listed:
  • Wensheng Wang

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Yuting Jia

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

Abstract

As a major emitter of CO 2 , China needs to take responsibility for slowing down global warming. In this paper, the potential carbon emission intensity of provinces is firstly calculated using the non-radial directional distance function under the group- and meta-frontier techniques, and then six scenarios based on two factors (economic development and carbon intensity) are set up to estimate the emission reduction potential of China and each province. Considering the goal of carbon neutrality, the calculation of CO 2 emission reduction potential quantifies the amount of emissions that can be reduced and the amount of emissions that should be balanced. Additionally, the degree of difficulty in achieving abatement potential is also calculated. The findings are as follows: First, assuming that the economic growth rate is reduced to 4.4% (achieving the second “100-year goal”) and each province adopts the most advanced low-carbon technologies, China could reduce carbon emissions by 5970.56 Mt compared to 2019 levels. To achieve net-zero emissions, the remaining 3824.2 Mt of carbon emissions should be removed by carbon reduction technologies. Second, the effect of slowing down economic growth and decreasing carbon intensity varies greatly among provinces. Hebei and Shandong should be prioritized as they have the greatest potential for emission reductions under both scenarios. Third, it is more difficult for Beijing, Shanghai, Hubei, Hunan, Inner Mongolia Autonomous Region, Chongqing, and Sichuan to achieve the abatement potential and they require more effort to reduce the same amount of carbon emissions compared to other provinces. The study provides a reference for achieving carbon neutrality and helps provinces to develop differentiated emission reduction strategies.

Suggested Citation

  • Wensheng Wang & Yuting Jia, 2024. "Scenario Analysis of CO 2 Reduction Potentials from a Carbon Neutral Perspective," Sustainability, MDPI, vol. 16(10), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4274-:d:1397474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    2. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    3. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    4. Zhang, Yue-Jun & Liang, Ting & Jin, Yan-Lin & Shen, Bo, 2020. "The impact of carbon trading on economic output and carbon emissions reduction in China’s industrial sectors," Applied Energy, Elsevier, vol. 260(C).
    5. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    6. Yanni Yu & Yongrok Choi, 2015. "Measuring Environmental Performance Under Regional Heterogeneity in China: A Metafrontier Efficiency Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 375-388, October.
    7. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    8. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    9. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    2. Lin, Boqiang & Sai, Rockson, 2022. "Towards low carbon economy: Performance of electricity generation and emission reduction potential in Africa," Energy, Elsevier, vol. 251(C).
    3. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    4. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    5. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    6. Wang, Ailun & Hu, Shuo & Li, Jianglong, 2021. "Does economic development help achieve the goals of environmental regulation? Evidence from partially linear functional-coefficient model," Energy Economics, Elsevier, vol. 103(C).
    7. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    8. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    9. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    10. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    11. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    12. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    13. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    14. Monastyrenko, Evgenii, 2017. "Eco-efficiency outcomes of mergers and acquisitions in the European electricity industry," Energy Policy, Elsevier, vol. 107(C), pages 258-277.
    15. Zhang, Ning & Kong, Fanbin & Choi, Yongrok, 2014. "Measuring sustainability performance for China: A sequential generalized directional distance function approach," Economic Modelling, Elsevier, vol. 41(C), pages 392-397.
    16. Wugan Cai & Peiyun Ye, 2022. "Local-neighborhood effects of different environmental regulations on green innovation: evidence from prefecture level cities of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4810-4834, April.
    17. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    18. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    19. Wang, Nannan & Chen, Ji & Yao, Shengnan & Chang, Yen-Chiang, 2018. "A meta-frontier DEA approach to efficiency comparison of carbon reduction technologies on project level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2606-2612.
    20. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4274-:d:1397474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.