IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p356-d1310813.html
   My bibliography  Save this article

The Effect of Size on the Mechanical Properties of 3D-Printed Polymers

Author

Listed:
  • Hamed Sadaghian

    (School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Behrooz Dadmand

    (Department of Civil Engineering, Razi University, Kermanshah 6718773654, Iran)

  • Majid Pourbaba

    (Navier Laboratory, Ecole des Ponts ParisTech, 77455 Paris, France)

  • Soheil Jabbari

    (Department of Civil Engineering, Islamic Azad University, Maragheh Branch, Maragheh 5519747591, Iran)

  • Jung Heum Yeon

    (Civil Engineering Program, Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA)

Abstract

Most of the experiments on additively manufactured polymers are on a small scale, and it remains uncertain whether findings at a small scale can be extrapolated to their larger-scale counterparts. This uncertainty mainly arises due to the limited studies on the effect of size on three-dimensional (3D)-printed polymers, among many others. Given this background, this preliminary study aims to investigate the effect of geometric dimensions (i.e., the size effect) on the mechanical performance of four representative types of 3D-printable polymers, namely, (1) polycarbonate acrylonitrile butadiene styrene (PC/ABS), (2) acrylonitrile-styrene-acrylate (ASA), (3) polylactic acid (PLA) as a bio biodegradable and sustainable material, and (4) polyamide (PA, nylon), based on compression, modulus of elasticity, tension, and flexural tests. Eight different sizes were investigated for compression, modulus of elasticity, and tension tests, while seven different sizes were tested under flexure as per relevant test standards. A material extrusion technique was used to 3D-print the polymers in a flat build orientation and at an infill orientation angle of 45°. The results have shown that the mechanical properties of the 3D-printed polymers were size-dependent, regardless of the material type, with the most significant being flexure, followed by tension, compression, and modulus of elasticity; however, no clear general trend could be identified in this regard. All the materials except for nylon showed a brittle failure pattern, characterized by interfacial failure rather than filament failure. PLA outperformed the other three polymer specimens in terms of strength, irrespective of the type of loading.

Suggested Citation

  • Hamed Sadaghian & Behrooz Dadmand & Majid Pourbaba & Soheil Jabbari & Jung Heum Yeon, 2023. "The Effect of Size on the Mechanical Properties of 3D-Printed Polymers," Sustainability, MDPI, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:356-:d:1310813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana Fonseca & Edgar Ramalho & Ana Gouveia & Filipa Figueiredo & João Nunes, 2023. "Life Cycle Assessment of PLA Products: A Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    2. Shu Lun Mak & Ming Yan Tanya Wu & Wai Ying Chak & Wang Kei Kwong & Wai Fan Tang & Chi Ho Li & Chi Chung Lee & Chun Yin Li, 2023. "A Review of the Feasibility of Producing Polylactic Acid (PLA) Polymers Using Spent Coffee Ground," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katerina Synani & Konstadinos Abeliotis & Kelly Velonia & Angeliki Maragkaki & Thrassyvoulos Manios & Katia Lasaridi, 2024. "Environmental Impact and Sustainability of Bioplastic Production from Food Waste," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    2. Lostado-Lorza, Rubén & Corral-Bobadilla, Marina & Sabando-Fraile, Celia & Somovilla-Gómez, Fátima, 2024. "Enhancing thermal conductivity of sinterized bronze (Cu89/Sn11) by 3D printing and thermal post-treatment: Energy efficiency and environmental sustainability," Energy, Elsevier, vol. 299(C).
    3. Federico Rotini & Lorenzo Fiorineschi & Leonardo Conti & Giuseppe Rossi, 2024. "Investigating Polylactic Acid Foam–Plant Fiber Composites for Sound Absorption and Insulation," Sustainability, MDPI, vol. 16(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:356-:d:1310813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.