Author
Listed:
- Binbin Xu
(No.3 Engineering Company Ltd. of CCCC First Harbor Engineering Company, Dalian 116011, China)
- Runlai Yang
(No.3 Engineering Company Ltd. of CCCC First Harbor Engineering Company, Dalian 116011, China)
- Hao Dai
(No.3 Engineering Company Ltd. of CCCC First Harbor Engineering Company, Dalian 116011, China)
- Zhichao Dong
(No.3 Engineering Company Ltd. of CCCC First Harbor Engineering Company, Dalian 116011, China)
- Yongxing Zhang
(School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China)
Abstract
The application of non-excavation construction technology, such as the pipe jacking method, has obvious advantages in building urban underground space engineering projects, which can effectively reduce the occupation of ground surfaces and the migration of obstacles above or below the ground. However, pipe jacking machines with a rectangular cross-section can easily encounter great difficulty due to the significantly increased jacking resistance while it is jacked in hard rock strata, which are often influenced by large blind spots on the working face of pipe jacking machines with a rectangular cross-section. The aforementioned blind spots belong to areas that cannot be cut by the cutter heads due to the circular cutterhead and rectangular outer frame of pipe jacking machines with a rectangular cross-section. Therefore, the effective pretreatment of the aforementioned blind spots should be implemented prior to operating pipe jacking machines with a rectangular cross-section in hard rock strata. This paper presents a case study of employing horizontal-directional drilling as a multi-pilot heading pretreatment for breaking large blind spots on the working face of pipe jacking machines with a rectangular cross-section, which was implemented prior to operating a pipe jacking machine with a rectangular cross-section in shallow buried rock strata. In particular, this multi-pilot heading pretreatment is expected to be used to safely construct a rectangular comprehensive pipe gallery using pipe jacking machines with a rectangular cross-section in shallow buried rock strata and when passing underneath existing light rail lines, which can effectively save the precious land resources required for sustainable development. The study was implemented by employing a numerical simulation, focusing on the safety of the adjacent existing light rail line and the stability of the surrounding rocks, which are influenced by the variation in the distribution positions and sizes of the drilling holes used when implementing the horizontal-directional drilling. The results demonstrate that the horizontal-directional drilling applied for the multi-pilot heading pretreatment could effectively break the blind spots on the working face of the pipe jacking machine with a rectangular cross-section, in which the safety of the adjacent existing infrastructure was significantly influenced by the distribution positions and sizes of the drilling holes used when implementing the horizontal-directional drilling. This study can provide a reference for carrying out pipe jacking construction using pipe jacking machines with a rectangular cross-section, in which horizontal-directional drilling is employed as the multi-pilot heading pretreatment for breaking the large blind spots on the working face. Moreover, the distribution positions and sizes of the drilling holes used when implementing the horizontal-directional drilling could be appropriately optimized by utilizing the method of numerical analysis. Meanwhile, the study is also expected to eliminate the hazards of safely running the aforementioned adjacent existing light rail line during implementing the multi-pilot heading pretreatment of horizontal-directional drilling.
Suggested Citation
Binbin Xu & Runlai Yang & Hao Dai & Zhichao Dong & Yongxing Zhang, 2023.
"Behavior of Horizontal-Directional Drilling for Multi-Pilot Heading Pretreating Blind Spots in Pipe Jacking Construction,"
Sustainability, MDPI, vol. 16(1), pages 1-12, December.
Handle:
RePEc:gam:jsusta:v:16:y:2023:i:1:p:314-:d:1309845
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:314-:d:1309845. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.