IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7659-d1140989.html
   My bibliography  Save this article

Building Density Dynamics and Habitability Evaluation of China’s Nanning City

Author

Listed:
  • Yongke Wu

    (Guangxi Institute of Natural Resources Survey and Monitoring, Nanning 530200, China)

  • Xiankun Yang

    (School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

  • Zhiqiang Jia

    (School of Earth Sciences, Guilin University of Technology, Guilin 541004, China)

  • Jinnian Wang

    (School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

Abstract

Unlocking the secrets of habitable urban areas is crucial to improve the quality of life for urban dwellers. Accurate assessment of the ever-changing dynamics of a modern metropolis remains a challenging task. Previous studies have failed to reveal the dynamics of urban building spatial configuration at the micro-level. By analyzing high-resolution satellite imagery, this study has developed new direct and indirect metrics to better understand building density dynamics. We also applied these metrics to a study area located in Nanning City, China, revealing fascinating insights into the evolving spatial patterns of building density over the past 17 years. Our Q/R analysis uncovered areas with high habitability and suggested strategic improvements for sustainable building spatial configuration. This study is a valuable addition to the growing body of urban development research and provides scientific references for measurements of sustainable urban planning worldwide.

Suggested Citation

  • Yongke Wu & Xiankun Yang & Zhiqiang Jia & Jinnian Wang, 2023. "Building Density Dynamics and Habitability Evaluation of China’s Nanning City," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7659-:d:1140989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franz Schug & David Frantz & Sebastian van der Linden & Patrick Hostert, 2021. "Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qikang Zhong & Bo Li & Tian Dong, 2024. "Building sustainable slow communities: the impact of built environments on leisure-time physical activities in Shanghai," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-21, December.
    2. Sandra Hadam, 2023. "Experimentelle georeferenzierte Bevölkerungszahl auf Basis der Bevölkerungsfortschreibung und Mobilfunkdaten [Experimental georeferenced population figure based on intercensal population updates an," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(1), pages 35-69, March.
    3. Kiatkulchai Jitt-Aer & Graham Wall & Dylan Jones & Richard Teeuw, 2022. "Use of GIS and dasymetric mapping for estimating tsunami-affected population to facilitate humanitarian relief logistics: a case study from Phuket, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 185-211, August.
    4. Franz Schug & David Frantz & Dominik Wiedenhofer & Helmut Haberl & Doris Virág & Sebastian van der Linden & Patrick Hostert, 2023. "High‐resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 110-124, February.
    5. David Frantz & Franz Schug & Dominik Wiedenhofer & André Baumgart & Doris Virág & Sam Cooper & Camila Gómez-Medina & Fabian Lehmann & Thomas Udelhoven & Sebastian Linden & Patrick Hostert & Helmut Hab, 2023. "Unveiling patterns in human dominated landscapes through mapping the mass of US built structures," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. André Hartmann & Martin Behnisch & Robert Hecht & Gotthard Meinel, 2024. "Prediction of residential and non-residential building usage in Germany based on a novel nationwide reference data set," Environment and Planning B, , vol. 51(1), pages 216-233, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7659-:d:1140989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.