IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7618-d1140284.html
   My bibliography  Save this article

Role of Innovations to Mitigate CO 2 e: Theory and Evidence for European Economies

Author

Listed:
  • Muhammad Umar Farooq

    (Department of Economics, Government College University, Faisalabad 38000, Pakistan)

  • Azka Amin

    (School of Economics, Hainan University, Haikou 570228, China
    Institute of Energy Policy and Research, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Sun Peng

    (School of Economics, Hainan University, Haikou 570228, China)

  • Cem Işık

    (Faculty of Tourism, Anadolu University, Eskişehir 26470, Türkiye)

  • Ramaisa Aqdas

    (Department of Business Administration, Iqra University, Karachi 75500, Pakistan)

  • Muhammad Akbar

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China)

  • Gul Sabahat

    (Department of Economics, Government College University, Faisalabad 38000, Pakistan)

  • Serdar Ongan

    (Department of Economics, University of South Florida, Tampa, FL 33620, USA)

Abstract

Even though numerous researchers have analyzed the factors of carbon emissions, technological innovation’s linear and non-linear effects on carbon emissions have not been thoroughly examined in the energy–environment literature with the Environmental Kuznets Curve framework for European economies. For this purpose, this study has employed linear and non-linear autoregressive distributed lagged models, the novel bounds testing methodologies of dynamic simulations. Renewable energy and resident and non-resident patents are the indicators of technological innovations. The findings of this study demonstrate a significant negative association of renewable energy use and technological innovation with carbon emissions, while economic growth, non-renewable energy, and urbanization have depicted a positive relationship. These findings confirm the validity of the Environmental Kuznets hypothesis for the sampled countries. It is suggested that research and development facilities are required to mitigate environmental pollution by using innovation and discouraging more use of coal in electricity generation. This study also provides policymakers with particular statistics on sector-based renewable energy initiatives, highlighting the greenhouse gas impacts in European countries.

Suggested Citation

  • Muhammad Umar Farooq & Azka Amin & Sun Peng & Cem Işık & Ramaisa Aqdas & Muhammad Akbar & Gul Sabahat & Serdar Ongan, 2023. "Role of Innovations to Mitigate CO 2 e: Theory and Evidence for European Economies," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7618-:d:1140284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yang & Li, Feng, 2017. "Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China's provincial regions," Energy, Elsevier, vol. 125(C), pages 533-542.
    2. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    3. Georgatzi, Vasiliki V. & Stamboulis, Yeoryios & Vetsikas, Apostolos, 2020. "Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 11-20.
    4. Wajahat Ali & Azrai Abdullah & Muhammad Azam, 2016. "The Dynamic Linkage between Technological Innovation and carbon dioxide emissions in Malaysia: An Autoregressive Distributed Lagged Bound Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 389-400.
    5. Khatib, Hisham, 2012. "IEA World Energy Outlook 2011—A comment," Energy Policy, Elsevier, vol. 48(C), pages 737-743.
    6. Apergis, Nicholas & Ben Jebli, Mehdi & Ben Youssef, Slim, 2018. "Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries," Renewable Energy, Elsevier, vol. 127(C), pages 1011-1016.
    7. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    8. Eugene A. Rosa & Thomas Dietz, 2012. "Human drivers of national greenhouse-gas emissions," Nature Climate Change, Nature, vol. 2(8), pages 581-586, August.
    9. Acheampong, Alex O. & Dzator, Janet & Dzator, Michael & Salim, Ruhul, 2022. "Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    10. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    11. Shihong Zeng & Gen Li & Shaomin Wu & Zhanfeng Dong, 2022. "The Impact of Green Technology Innovation on Carbon Emissions in the Context of Carbon Neutrality in China: Evidence from Spatial Spillover and Nonlinear Effect Analysis," IJERPH, MDPI, vol. 19(2), pages 1-25, January.
    12. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    13. Beneito, Pilar, 2006. "The innovative performance of in-house and contracted R&D in terms of patents and utility models," Research Policy, Elsevier, vol. 35(4), pages 502-517, May.
    14. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    15. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    16. Janger, Jürgen & Schubert, Torben & Andries, Petra & Rammer, Christian & Hoskens, Machteld, 2017. "The EU 2020 innovation indicator: A step forward in measuring innovation outputs and outcomes?," Research Policy, Elsevier, vol. 46(1), pages 30-42.
    17. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    18. Shahbaz, Muhammad & Raghutla, Chandrashekar & Song, Malin & Zameer, Hashim & Jiao, Zhilun, 2020. "Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China," Energy Economics, Elsevier, vol. 86(C).
    19. Katsuya Ito, 2017. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries," International Economics, CEPII research center, issue 151, pages 1-6.
    20. Anwar, Ahsan & Siddique, Muhammad & Eyup Dogan, & Sharif, Arshian, 2021. "The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from Method of Moments Quantile Regression," Renewable Energy, Elsevier, vol. 164(C), pages 956-967.
    21. Ito, Katsuya, 2017. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries," International Economics, Elsevier, vol. 151(C), pages 1-6.
    22. Turgut Ozkan & Gozde Yanginlar & Salih Kalayci, 2019. "Testing the Transportation-induced Environmental Kuznets Curve Hypothesis: Evidence from Eight Developed and Developing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 174-183.
    23. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    24. Cem Işık & Ekrem Aydın & Tarik Dogru & Abdul Rehman & Rafael Alvarado & Munir Ahmad & Muhammad Irfan, 2021. "The Nexus between Team Culture, Innovative Work Behaviour and Tacit Knowledge Sharing: Theory and Evidence," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    25. Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    2. Mounir Dahmani & Mohamed Mabrouki & Ludovic Ragni, 2021. "Decoupling Analysis of Greenhouse Gas Emissions from Economic Growth: A Case Study of Tunisia," Energies, MDPI, vol. 14(22), pages 1-15, November.
    3. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    4. Alharthi, Majed & Hanif, Imran & Alamoudi, Hawazen, 2022. "Impact of environmental pollution on human health and financial status of households in MENA countries: Future of using renewable energy to eliminate the environmental pollution," Renewable Energy, Elsevier, vol. 190(C), pages 338-346.
    5. Asif Raihan & Rawshan Ara Begum & Mohd Nizam Mohd Said & Joy Jacqueline Pereira, 2022. "Relationship between economic growth, renewable energy use, technological innovation, and carbon emission toward achieving Malaysia’s Paris agreement," Environment Systems and Decisions, Springer, vol. 42(4), pages 586-607, December.
    6. Suyi Kim, 2020. "The Effects of Foreign Direct Investment, Economic Growth, Industrial Structure, Renewable and Nuclear Energy, and Urbanization on Korean Greenhouse Gas Emissions," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    7. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    8. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    9. Jamiu Adetola Odugbesan & Husam Rjoub, 2020. "Relationship Among Economic Growth, Energy Consumption, CO2 Emission, and Urbanization: Evidence From MINT Countries," SAGE Open, , vol. 10(2), pages 21582440209, April.
    10. Abdul Rehman & Mohammad Mahtab Alam & Magdalena Radulescu & Rafael Alvarado & Daniela Mihai & Madalina Brutu, 2022. "A Novel Investigation to Explore the Impact of Renewable Energy, Urbanization, and Trade on Carbon Emission in Bhutan," Energies, MDPI, vol. 15(9), pages 1-17, April.
    11. Özlem Karadağ Albayrak & Samet Topal & Serhat Çamkaya, 2022. "The Impact of Economic Growth, Renewable Energy, Non-renewable Energy and Trade Openness on the Ecological Footprint and Forecasting in Turkiye: an Case of the ARDL and NMGM Forecasting Model," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(2), pages 139-154, December.
    12. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    13. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    14. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).
    15. Yunzhao, Lu, 2022. "Modelling the role of eco innovation, renewable energy, and environmental taxes in carbon emissions reduction in E−7 economies: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 190(C), pages 309-318.
    16. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    17. Matheus Koengkan, 2018. "The decline of environmental degradation by renewable energy consumption in the MERCOSUR countries: an approach with ARDL modeling," Environment Systems and Decisions, Springer, vol. 38(3), pages 415-425, September.
    18. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    19. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 173-185.
    20. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7618-:d:1140284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.