IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7579-d1139911.html
   My bibliography  Save this article

Waste Not, Want Not: Sustainable Use of Anti-Stripping-Treated Waste Ceramic in Superpave Asphalt Mixtures

Author

Listed:
  • Mazen J. Al-Kheetan

    (Civil and Environmental Engineering Department, College of Engineering, Mutah University, Mutah, Karak 61710, Jordan
    Materials Science and Energy Lab, MSEL, Mutah University, Mutah, Karak 61710, Jordan)

Abstract

This research studied the sustainable utilization of waste ceramic in asphalt mixtures by substituting fine aggregate with treated and untreated waste ceramic produced from construction and demolition activities. To improve its adhesion to the asphalt binder and lower the moisture susceptibility of Superpave asphalt mixes, the waste ceramic was treated with a silane anti-stripping agent. The Marshall quotient (MQ), Marshall stability (MS), indirect tensile strength (ITS), retained Marshall stability (RMS), and tensile strength ratio (TSR) were used to assess the mechanical performance and moisture susceptibility of all mixes. The changes in the chemical composition, synergy, physical state, and microstructure of the studied composites were also investigated using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results revealed that substituting fine aggregate with 50% silane-treated waste ceramics reduced permanent deformation by 46%. Moreover, integrating silane-treated ceramics reduced asphalt mixture moisture susceptibility, with an RMS value of 87.7% obtained for asphalt containing 75% treated ceramic particles. The application of a silane anti-stripping agent resulted in high adhesion between the ceramic particles and bitumen as well as the production of fewer air voids in the mixes due to the formation of strong CH aromatic linkages, as well as Si-O and Si-O-Si bonds. The possibility of employing waste ceramics in asphalt mixes as a sustainable alternative to virgin aggregates while decreasing environmental impacts and improving resource efficiency is highlighted in this paper.

Suggested Citation

  • Mazen J. Al-Kheetan, 2023. "Waste Not, Want Not: Sustainable Use of Anti-Stripping-Treated Waste Ceramic in Superpave Asphalt Mixtures," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7579-:d:1139911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mazen J. Al-Kheetan & Juliana Byzyka & Seyed Hamidreza Ghaffar, 2021. "Sustainable Valorisation of Silane-Treated Waste Glass Powder in Concrete Pavement," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    2. Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7579-:d:1139911. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.