IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7417-d1136945.html
   My bibliography  Save this article

Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China

Author

Listed:
  • Hong Yu

    (School of Business and Tourism Management, Yunnan University, Kunming 650500, China)

  • Jianmin Zhang

    (School of Business and Tourism Management, Yunnan University, Kunming 650500, China)

  • Ning Xu

    (School of Political Science and Public Administration, Henan Normal University, Xinxiang 453007, China)

Abstract

Taking the innovation policy pilot of the national independent innovation demonstration zone (NIIDZ) as a quasi-natural experiment, we select a set of data covering 283 cities in China from 2004 to 2016 to empirically test the impact and mechanism of NIIDZ on urban green total factor productivity (GTFP) by using a progressive difference-in-differences (DID) model. The research indicates that the NIIDZ policy pilot can effectively help promote the growth of urban GTFP; talent agglomeration and local fiscal expenditure on science and technology are important channels for the policy to promote urban GTFP. Various methods have proved the reliability of our research results. Further, affected by geographical location, resource endowment and population size, the pilot effects of the NIIDZ also demonstrate regional heterogeneity. Our study provides a useful supplement for innovation policy evaluation from both theoretical and empirical perspectives.

Suggested Citation

  • Hong Yu & Jianmin Zhang & Ning Xu, 2023. "Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7417-:d:1136945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    2. Yingying Zhou & Yaru Xu & Chuanzhe Liu & Zhuoqing Fang & Xinyue Fu & Mingzhao He, 2019. "The Threshold Effect of China’s Financial Development on Green Total Factor Productivity," Sustainability, MDPI, vol. 11(14), pages 1-23, July.
    3. Pradhan, Rudra P. & Arvin, Mak B. & Bahmani, Sahar, 2018. "Are innovation and financial development causative factors in economic growth? Evidence from a panel granger causality test," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 130-142.
    4. Thijs ten Raa & Victoria Shestalova, 2021. "The Solow Residual, Domar Aggregation, and Inefficiency: A Synthesis of TFP Measures," World Scientific Book Chapters, in: Efficiency and Input-Output Analyses Theory and Applications, chapter 2, pages 23-38, World Scientific Publishing Co. Pte. Ltd..
    5. Tian, Peng & Lin, Boqiang, 2017. "Promoting green productivity growth for China's industrial exports: Evidence from a hybrid input-output model," Energy Policy, Elsevier, vol. 111(C), pages 394-402.
    6. Xiaocang Xu & Xiuquan Huang & Jun Huang & Xin Gao & Linhong Chen, 2019. "Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    7. Marco Magnani, 2022. "Making the Global Economy Work for Everyone," Springer Books, Springer, number 978-3-030-92084-5, December.
    8. Sohag, Kazi & Begum, Rawshan Ara & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia," Energy, Elsevier, vol. 90(P2), pages 1497-1507.
    9. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    10. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    11. Prokop, Viktor & Hajek, Petr & Stejskal, Jan, 2021. "Configuration Paths to Efficient National Innovation Ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    12. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    13. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    14. Zhai, Runzhuo & Lou, Zhaohui, 2022. "Chinese agricultural output and TFP: 1661–2019," Economics Letters, Elsevier, vol. 213(C).
    15. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    16. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    17. Ning Xu & Desen Zhao & Wenjie Zhang & He Zhang & Wanxu Chen & Min Ji & Ming Liu, 2022. "Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China," Land, MDPI, vol. 11(10), pages 1-21, September.
    18. Zhiguo He & Wei Wei, 2023. "China's Financial System and Economy: A Review," Annual Review of Economics, Annual Reviews, vol. 15(1), pages 451-483, September.
    19. Ning, Lutao & Wang, Fan & Li, Jian, 2016. "Urban innovation, regional externalities of foreign direct investment and industrial agglomeration: Evidence from Chinese cities," Research Policy, Elsevier, vol. 45(4), pages 830-843.
    20. Yuanxin Peng & Zhuo Chen & Juanzhi Xu & Jay Lee, 2020. "Analysis of green total factor productivity trend and its determinants for the countries along silk roads," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1711-1726, December.
    21. Wang, Mei & Xu, Mi & Ma, Shaojun, 2021. "The effect of the spatial heterogeneity of human capital structure on regional green total factor productivity," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 427-441.
    22. Alfred Kleinknecht & Kees Van Montfort & Erik Brouwer, 2002. "The Non-Trivial Choice between Innovation Indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 11(2), pages 109-121.
    23. Yu, Yantuan & Chen, Xudong & Zhang, Ning, 2022. "Innovation and energy productivity: An empirical study of the innovative city pilot policy in China✰," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    24. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    25. Chen, Ku-Hsieh & Huang, Yi-Ju & Yang, Chih-Hai, 2009. "Analysis of regional productivity growth in China: A generalized metafrontier MPI approach," China Economic Review, Elsevier, vol. 20(4), pages 777-792, December.
    26. Guoqiang Tian & Xudong Chen, 2022. "Practice of China’s Planned Economic System (1949–1977)," Springer Books, in: China’s Reform: History, Logic, and Future, chapter 0, pages 79-89, Springer.
    27. Li, Changsheng & Qi, Yaping & Liu, Shaohui & Wang, Xu, 2022. "Do carbon ETS pilots improve cities' green total factor productivity? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 108(C).
    28. Wang, Rong & Tan, Junlan, 2021. "Exploring the coupling and forecasting of financial development, technological innovation, and economic growth," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengchan Zhao & Yangyang Cheng, 2024. "Is Public Participation Weak Environmental Regulation? Experience from China’s Environmental Public Interest Litigation Pilots," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    2. Zetian Cui & Yancheng Ning & Jia Song & Jun Yang, 2024. "Impact of National Innovative City Policy on Enterprise Green Technology Innovation—Mediation Role of Innovation Environment and R&D Investment," Sustainability, MDPI, vol. 16(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    2. Lv, Chengchao & Song, Jie & Lee, Chien-Chiang, 2022. "Can digital finance narrow the regional disparities in the quality of economic growth? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 502-521.
    3. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    4. Qingyan Zhu, 2023. "How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    5. Guang Chen & Akira Hibiki, 2022. "Can the Carbon Emission Trading Scheme Influence Industrial Green Production in China?," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    6. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    7. Jiekuan Zhang & Yan Zhang, 2023. "Examining the effects of economic growth pressure on green total factor productivity: evidence from China," Economic Change and Restructuring, Springer, vol. 56(6), pages 4309-4337, December.
    8. Lingyan Xu & Dandan Wang & Jianguo Du, 2022. "Spatial-Temporal Evolution and Influencing Factors of Urban Green and Smart Development Level in China: Evidence from 232 Prefecture-Level Cities," IJERPH, MDPI, vol. 19(7), pages 1-19, March.
    9. Yuxin Fang & Hongjun Cao & Jihui Sun, 2022. "Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect," IJERPH, MDPI, vol. 19(22), pages 1-27, November.
    10. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    11. Yu, Tiffany Hui-Kuang & Huarng, Kun-Huang & Lai, Yun Ting, 2021. "Configural analysis of innovation for exploring economic growth," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    12. Feng Ye & Zhongna Yang & Mark Yu & Susan Watson & Ashley Lovell, 2023. "Can Market-Oriented Reform of Agricultural Subsidies Promote the Growth of Agricultural Green Total Factor Productivity? Empirical Evidence from Maize in China," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    13. Yan Xiao & Yan Zhang & Jiekuan Zhang, 2023. "The Impact of Carbon Emission Trading on Industrial Green Total Factor Productivity," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    14. Xiaocang Xu & Xiuquan Huang & Jun Huang & Xin Gao & Linhong Chen, 2019. "Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    15. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
    16. Wenhan Ren & Yu Chen, 2022. "Realizing the Improvement of Green Total Factor Productivity of the Marine Economy—New Evidence from China’s Coastal Areas," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    17. Liu, Zuankuo & Xin, Li, 2019. "Has China's Belt and Road Initiative promoted its green total factor productivity?——Evidence from primary provinces along the route," Energy Policy, Elsevier, vol. 129(C), pages 360-369.
    18. Liu, Wei & Zhan, Jinyan & Zhao, Fen & Wang, Pei & Li, Zhihui & Teng, Yanmin, 2018. "Changing trends and influencing factors of energy productivity growth: A case study in the Pearl River Delta Metropolitan Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 1-9.
    19. Xiaoheng Zhang & Keyu Bao & Zebin Liu & Li Yang, 2022. "Digital Finance, Industrial Structure, and Total Factor Energy Efficiency: A Study on Moderated Mediation Model with Resource Dependence," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    20. Wenhui Luo & Gennian Tang & Peiling Yang & Chunxia Jia & Ruize Yang, 2024. "Examining Digital Economy’s Role in Urban Green Development: A Study of the Yangtze River Delta Region," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 11250-11285, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7417-:d:1136945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.