IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7357-d1135806.html
   My bibliography  Save this article

Flood Influence Characteristics of Rail Transit Engineering of Tunnel, Viaduct, and Roadbed through Urban Flood Detention Areas

Author

Listed:
  • Hui Zhang

    (Institute of River Research, Changjiang River Scientific Research Institute, Wuhan 430010, China)

  • Xizhong Shen

    (Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China
    Research Center on Levee Safety and Disaster Prevention, Ministry of Water Resources, Zhengzhou 450003, China)

  • Yuan Yuan

    (Institute of River Research, Changjiang River Scientific Research Institute, Wuhan 430010, China)

Abstract

Many subways, light rails, and trains travel through urban flood retention regions via tunnels, viaducts, and roadbeds; however, less is known about the flood influence laws of rail transportation by the crossing ways. Rail transit projects were chosen as research objects for the ordinary subway, light rail, and railway passing through urban flood detention areas in Wuhan, and the flood influence characteristics were systematically compared for the three crossing ways. The study revealed that crossing ways primarily affected the flood storage volume occupied per unit length of lines and that the flood influence of rail projects on flood detention areas was proportionate to the flood storage volume occupied per unit length of lines. Specifically, the flood storage volume occupied per unit length of tunnels was about 1/8.9 that of viaducts and 1/19.7 that of roadbeds. Moreover, the tunnel way had the least influence on the main aspects, such as flood control, floods on engineering, and engineering-related aspects; the roadbed-based way had the largest; and the viaduct way was in the middle. These findings may provide technical support for the decision-making, engineering planning, construction, and management of rail transit and other projects in urban flood detention areas.

Suggested Citation

  • Hui Zhang & Xizhong Shen & Yuan Yuan, 2023. "Flood Influence Characteristics of Rail Transit Engineering of Tunnel, Viaduct, and Roadbed through Urban Flood Detention Areas," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7357-:d:1135806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuk San Liew & Safari Mat Desa & Md. Nasir Md. Noh & Mou Leong Tan & Nor Azazi Zakaria & Chun Kiat Chang, 2021. "Assessing the Effectiveness of Mitigation Strategies for Flood Risk Reduction in the Segamat River Basin, Malaysia," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    2. P. E. Zope & T. I. Eldho & V. Jothiprakash, 2017. "Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: a case study of Poisar River basin, Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1267-1283, July.
    3. J. Yazdi, 2019. "Optimal Operation of Urban Storm Detention Ponds for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2109-2121, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrich Grežo & Matej Močko & Martin Izsóff & Gréta Vrbičanová & František Petrovič & Jozef Straňák & Zlatica Muchová & Martina Slámová & Branislav Olah & Ivo Machar, 2020. "Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    2. Ian Avery Bick & Ronita Bardhan & Terry Beaubois, 2018. "Applying fuzzy logic to open data for sustainable development decision-making: a case study of the planned city Amaravati," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1317-1339, April.
    3. Yanbo Duan & Yu Gary Gao & Yusen Zhang & Huawei Li & Zhonghui Li & Ziying Zhou & Guohang Tian & Yakai Lei, 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics," Land, MDPI, vol. 11(11), pages 1-23, October.
    4. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    5. Xuan Wang & Wenchong Tian & Zhenliang Liao, 2021. "Offline Optimization of Sluice Control Rules in the Urban Water System for Flooding Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 949-962, February.
    6. Navin Bhatta & Shakhawat H. Tanim & Pamela Murray-Tuite, 2024. "Dynamics of Link Importance through Normal Conditions, Flood Response, and Recovery," Sustainability, MDPI, vol. 16(2), pages 1-35, January.
    7. Jean Nsabimana & Sabine Henry & Aloys Ndayisenga & Désiré Kubwimana & Olivier Dewitte & François Kervyn & Caroline Michellier, 2023. "Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City," Land, MDPI, vol. 12(10), pages 1-26, October.
    8. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    9. Jiaxin Li & Wuzhong Zhou & Cong Tao, 2024. "The Impact of Urbanization on Surface Runoff and Flood Prevention Strategies: A Case Study of a Traditional Village," Land, MDPI, vol. 13(9), pages 1-27, September.
    10. Wei Gao & Gengyu Chen & Fanying Jiang & Jiake Shen & Yuncai Wang, 2021. "To Act or Not to Act: Are Natural Landscapes a Key Force in the Resilience of Historic Urban Landscapes?," Sustainability, MDPI, vol. 13(18), pages 1-33, September.
    11. Jiaxin Li & Wuzhong Zhou & Cong Tao, 2024. "The Value of Traditional Ecological Knowledge in Stormwater Management: A Case Study of a Traditional Village," Land, MDPI, vol. 13(2), pages 1-22, February.
    12. Li-Chi Chiang & Yi-Ting Chuang & Chin-Chuan Han, 2019. "Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan," IJERPH, MDPI, vol. 16(2), pages 1-21, January.
    13. Saidur Rahaman & Selim Jahangir & Md Senaul Haque & Ruishan Chen & Pankaj Kumar, 2021. "Spatio-temporal changes of green spaces and their impact on urban environment of Mumbai, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6481-6501, April.
    14. Yan Chen & Hao Hou & Yao Li & Luoyang Wang & Jinjin Fan & Ben Wang & Tangao Hu, 2022. "Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    15. Stefan Reinstaller & Fabian Funke & Albert Willhelm König & Markus Pichler & Manfred Kleidorfer & Dirk Muschalla, 2024. "Resilient Urban Flood Management: A Multi-Objective Assessment of Mitigation Strategies," Sustainability, MDPI, vol. 16(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7357-:d:1135806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.