IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7158-d1132302.html
   My bibliography  Save this article

Carbon Fixation and Soil Aggregation Affected by Biochar Oxidized with Hydrogen Peroxide: Considering the Efficiency of Pyrolysis Temperature

Author

Listed:
  • Mohammad Ghorbani

    (Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic)

  • Reinhard W. Neugschwandtner

    (Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria)

  • Gerhard Soja

    (Institute for Chemical and Energy Engineering, University of Natural Resources and Life Sciences, Muthgasse 107/I, 1190 Vienna, Austria
    AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria)

  • Petr Konvalina

    (Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic)

  • Marek Kopecký

    (Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic)

Abstract

Biochar, as a carbon-rich material, may have a notable influence on carbon balance, especially that in soil mediums. The oxidation of biochar modifies the biochar’s effects on the soil’s carbon dynamics. To evaluate the alteration in soil carbon storage, biochars derived from wheat straw (WS) and wood residues (WR) produced at 350, 450, and 550 °C (marked BWS 350 , BWS 450 , BWS 550 , BWR 350 , BWR 450 , and BWR 550 ) were oxidized with hydrogen peroxide (H 2 O 2 ) and applied on a loamy soil (2% d.m.) for a 180-day greenhouse incubation period. The highest organic carbon (OC) concentration and carbon pool index (CPI) were obtained from the oxidized BWS 550 , with 154% and 70% increases, respectively, compared to the unamended control. For both the WS and WR biochars, applying oxidation significantly improved the soil’s aggregation indices, i.e., the mean weight diameter (MWD), water stable aggregates (WSA), and fractal dimension (D). BWS 350 , BWS 450 , and BWS 550 showed significantly higher WSAs, with percentages of 68, 74, and 76% compared to the control (41%). The fractal dimensions decreased with an increasing pyrolysis temperature in both the biochar types. All the biochar treatments significantly decreased the soil bulk density (BD), while for both the pristine and oxidized biochars, the lowest BD was related to the biochars produced at high temperatures. The structural qualities of the biochars were enhanced by oxidation, particularly their specific surface areas and porosities, and this had a substantial impact on the soil structure and carbon status. The wheat straw biochar was more effective than the wood residue biochar and a higher pyrolysis temperature was more effective than lower ones for supporting the enhancement of the soil carbon pool.

Suggested Citation

  • Mohammad Ghorbani & Reinhard W. Neugschwandtner & Gerhard Soja & Petr Konvalina & Marek Kopecký, 2023. "Carbon Fixation and Soil Aggregation Affected by Biochar Oxidized with Hydrogen Peroxide: Considering the Efficiency of Pyrolysis Temperature," Sustainability, MDPI, vol. 15(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7158-:d:1132302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siyao Bian & Shuang Xu & Zhibing Yin & Sen Liu & Jihui Li & Shuying Xu & Yucang Zhang, 2021. "An Efficient Strategy for Enhancing the Adsorption Capabilities of Biochar via Sequential KMnO 4 -Promoted Oxidative Pyrolysis and H 2 O 2 Oxidation," Sustainability, MDPI, vol. 13(5), pages 1-12, March.
    2. Mohammad Ghorbani & Elnaz Amirahmadi & Reinhard W. Neugschwandtner & Petr Konvalina & Marek Kopecký & Jan Moudrý & Kristýna Perná & Yves Theoneste Murindangabo, 2022. "The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    2. Zhichao Shi & Aowen Ma & Yuanhang Chen & Menghan Zhang & Yin Zhang & Na Zhou & Shisuo Fan & Yi Wang, 2023. "The Removal of Tetracycline from Aqueous Solutions Using Peanut Shell Biochars Prepared at Different Pyrolysis Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-15, January.
    3. Katarzyna Wystalska & Anna Kwarciak-Kozłowska & Renata Włodarczyk, 2022. "Influence of Technical Parameters of the Pyrolysis Process on the Surface Area, Porosity, and Hydrophobicity of Biochar from Sunflower Husk Pellet," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    4. Xiaoxian Yuan & Qiang Wang & Zhipu Wang & Sikai Wu & Yawei Zhai & Haibing Zhang & Lisong Zhou & Bei Lu & Kefan Chen & Xinwei Wang, 2023. "Optimization of Mixed-Based Biochar Preparation Process and Adsorption Performance of Lead and Cadmium," Sustainability, MDPI, vol. 15(15), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7158-:d:1132302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.