Pavement Distress Identification Based on Computer Vision and Controller Area Network (CAN) Sensor Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nazmus Sakib Ahmed & Nathan Huynh & Sarah Gassman & Robert Mullen & Charles Pierce & Yuche Chen, 2022. "Predicting Pavement Structural Condition Using Machine Learning Methods," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
- Rita Justo-Silva & Adelino Ferreira & Gerardo Flintsch, 2021. "Review on Machine Learning Techniques for Developing Pavement Performance Prediction Models," Sustainability, MDPI, vol. 13(9), pages 1-27, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nicola Baldo & Matteo Miani & Fabio Rondinella & Clara Celauro, 2021. "A Machine Learning Approach to Determine Airport Asphalt Concrete Layer Moduli Using Heavy Weight Deflectometer Data," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
- Nazmus Sakib Ahmed & Nathan Huynh & Sarah Gassman & Robert Mullen & Charles Pierce & Yuche Chen, 2022. "Predicting Pavement Structural Condition Using Machine Learning Methods," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
More about this item
Keywords
pavement maintenance; XGBoost; CAN sensors in roads condition; YOLOv5; sensor-based model; pavement condition monitoring; Deep Learning models for road condition monitoring;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6438-:d:1120057. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.