IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5137-d1096869.html
   My bibliography  Save this article

An Appraisal on China’s Feed-In Tariff Policies for PV and Wind Power: Implementation Effects and Optimization

Author

Listed:
  • Xiaohua Song

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Yamin Huang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Yulin Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Huaneng Power International, Inc., Beijing 100031, China)

  • Wen Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Zeqi Ge

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

China’s FIT policies for PV and wind power are leading policies to promote the low-carbon transformation of the power system. We design composite models based on real options and the cost–benefit analysis, using the Evaluation Model of Implementation Effects and the Optimization Model for Policy Design to evaluate the design and implementation effects of FIT policies for PV and wind power. The results of the Evaluation Model of Implementation Effects are the following: (1) The economic and environmental competitiveness of developing PV and wind power projects under the parity policy raised significantly (2.524 to 3.136 times increase). (2) The last two-phase FIT policies fail to encourage power generation enterprises to carry out R&D activities, and supporting policies can be considered to offer incentives for R&D activities in upstream industries of power generation. (3) The substitution effect of green certificates on government subsidies is limited, and new market compensation mechanisms such as CCER can be introduced nationwide. The results of the Optimization Model for Policy Design are the following: (1) There is still space for a 10.306% to 22.981% reduction in feed-in tariffs during the parity policy. (2) Due to the risk of the mismatch in the cost attribute and uneven investment across regions, the parity policy is not suitable for long-term implementation, so the feed-in tariffs for PV and wind power should progressively be disconnected from feed-in tariffs for thermal power.

Suggested Citation

  • Xiaohua Song & Yamin Huang & Yulin Zhang & Wen Zhang & Zeqi Ge, 2023. "An Appraisal on China’s Feed-In Tariff Policies for PV and Wind Power: Implementation Effects and Optimization," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5137-:d:1096869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xingping Zhang & Wenfeng Liu & Hongyang Zhang & Jiahai Yuan, 2021. "Can China Realize the Grid Parity Target of Centralized Photovoltaic Power by 2020?," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(3), pages 740-756, February.
    2. Zhao, Xin & Mahendru, Mandeep & Ma, Xiaowei & Rao, Amar & Shang, Yuping, 2022. "Impacts of environmental regulations on green economic growth in China: New guidelines regarding renewable energy and energy efficiency," Renewable Energy, Elsevier, vol. 187(C), pages 728-742.
    3. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    4. Wei, Youzhou & Zou, Qing-Ping & Lin, Xianghong, 2021. "Evolution of price policy for offshore wind energy in China: Trilemma of capacity, price and subsidy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    5. Zhisong Chen & Keith C. K. Cheung & Xiangtong Qi, 2021. "Subsidy policies and operational strategies for multiple competing photovoltaic supply chains," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 914-955, December.
    6. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    7. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    8. Liu, Jicheng & Lu, Yunyuan, 2022. "Research on the evaluation of China's photovoltaic policy driving ability under the background of carbon neutrality," Energy, Elsevier, vol. 250(C).
    9. Zhang, Alex Hongliang & Sirin, Selahattin Murat & Fan, Conglai & Bu, Maoliang, 2022. "An analysis of the factors driving utility-scale solar PV investments in China: How effective was the feed-in tariff policy?," Energy Policy, Elsevier, vol. 167(C).
    10. Schuman, Sara & Lin, Alvin, 2012. "China's Renewable Energy Law and its impact on renewable power in China: Progress, challenges and recommendations for improving implementation," Energy Policy, Elsevier, vol. 51(C), pages 89-109.
    11. Zhang, M.M. & Zhang, C. & Liu, L.Y. & Zhou, D.Q., 2020. "Is it time to launch grid parity in the Chinese solar photovoltaic industry? Evidence from 335 cities," Energy Policy, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Lu & Yunfei Chen & Qiaoqiao Fan, 2021. "Study on Feasibility of Photovoltaic Power to Grid Parity in China Based on LCOE," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    2. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    3. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    4. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    5. Hengtian Wang & Xiaolong Yang & Xinxin Xu & Liu Fei, 2021. "Exploring Opportunities and Challenges of Solar PV Power under Carbon Peak Scenario in China: A PEST Analysis," Energies, MDPI, vol. 14(11), pages 1-28, May.
    6. Wang, Rong & Hasanefendic, Sandra & Von Hauff, Elizabeth & Bossink, Bart, 2022. "The cost of photovoltaics: Re-evaluating grid parity for PV systems in China," Renewable Energy, Elsevier, vol. 194(C), pages 469-481.
    7. Zhang, Minhui & Zhang, Qin, 2020. "Grid parity analysis of distributed photovoltaic power generation in China," Energy, Elsevier, vol. 206(C).
    8. Zhang, Alex Hongliang & Sirin, Selahattin Murat & Fan, Conglai & Bu, Maoliang, 2022. "An analysis of the factors driving utility-scale solar PV investments in China: How effective was the feed-in tariff policy?," Energy Policy, Elsevier, vol. 167(C).
    9. Liu, Tingting & Chen, Zhe & Xu, Jiuping, 2022. "Empirical evidence based effectiveness assessment of policy regimes for wind power development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Cao, Xun & Kleit, Andrew & Liu, Chuyu, 2016. "Why invest in wind energy? Career incentives and Chinese renewable energy politics," Energy Policy, Elsevier, vol. 99(C), pages 120-131.
    11. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    12. Guo, Shu & Zhang, ZhongXiang, 2023. "Green credit policy and total factor productivity: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 128(C).
    13. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    14. Li Li & Dezhong Kong & Qinzhi Liu & Yu Xiong & Fei Chen & Haibing Zhang & Yunyun Chu, 2022. "Comprehensive Identification of Surface Subsidence Evaluation Grades of Mines in Southwest China," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    15. Gaoyuan Xu & Xiaojing Wang, 2022. "Research on the Electricity Market Clearing Model for Renewable Energy," Energies, MDPI, vol. 15(23), pages 1-16, December.
    16. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    17. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    18. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    19. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    20. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5137-:d:1096869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.