IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5017-d1094806.html
   My bibliography  Save this article

Microplastics in Landfill Bodies: Abundance, Spatial Distribution and Effect of Landfill Age

Author

Listed:
  • Anastasiia Sholokhova

    (Department of Environmental Technology, Kaunas University of Technology, Radvilenu St. 19, LT-50254 Kaunas, Lithuania)

  • Gintaras Denafas

    (Department of Environmental Technology, Kaunas University of Technology, Radvilenu St. 19, LT-50254 Kaunas, Lithuania)

  • Justinas Ceponkus

    (Institute of Chemical Physics, Vilnius University, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania)

  • Tetiana Omelianenko

    (Department of Regional Studies and Tourism, Kyiv National Economic University Named after Vadym Hetman, 54/1 Prospect Peremogy, 03057 Kyiv, Ukraine)

Abstract

Almost a quarter of the plastic produced in Europe still ends up in landfills. In addition to the loss of valuable resources, this leads to the generation and accumulation of microplastics in landfills. The microplastics abundance in the refuse and their spatial distribution in the landfill body have not been practically studied. In the current work, changes in the abundance and characteristics of microplastics in landfill refuse from 3 age sections of the Lapės regional landfill, Lithuania, to a depth of 10–20 m were studied. A microplastics abundance of up to 55 particles/g or 52.8 g/kg was found. The lowest microplastics abundance was found in the old section, while the highest in the young (numerical) and the middle-aged (mass) sections. Moreover, microplastics abundance increased with the age of landfilled waste and depth, which may reflect the fragmentation of microplastics and their transport. Polyethylene and polypropylene were the dominant polymer types in all sections, while films were the dominant shape. The carbonyl index of PE microplastics was calculated to monitor microplastics oxidation. The analysis showed an increase of carbonyl index with landfill depth and landfill age, proving the intensive degradation of microplastics. Thus, landfills are large reservoirs of microplastics and their potential sources.

Suggested Citation

  • Anastasiia Sholokhova & Gintaras Denafas & Justinas Ceponkus & Tetiana Omelianenko, 2023. "Microplastics in Landfill Bodies: Abundance, Spatial Distribution and Effect of Landfill Age," Sustainability, MDPI, vol. 15(6), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5017-:d:1094806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Cristaldi & Maria Fiore & Pietro Zuccarello & Gea Oliveri Conti & Alfina Grasso & Ilenia Nicolosi & Chiara Copat & Margherita Ferrante, 2020. "Efficiency of Wastewater Treatment Plants (WWTPs) for Microplastic Removal: A Systematic Review," IJERPH, MDPI, vol. 17(21), pages 1-24, October.
    2. Inna Pitak & Gintaras Denafas & Arūnas Baltušnikas & Marius Praspaliauskas & Stasė-Irena Lukošiūtė, 2023. "Proposal for Implementation of Extraction Mechanism of Raw Materials during Landfill Mining and Its Application in Alternative Fuel Production," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasiia Sholokhova & Inna Pitak & Gintaras Denafas & Regina Kalpokaitė-Dičkuvienė & Marius Praspaliauskas & Juris Burlakovs, 2023. "An In-Depth Analysis of Physical, Chemical, and Microplastic Parameters of Landfill Fine Fraction for Biocover Construction," Sustainability, MDPI, vol. 15(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fathi Alarabi Yosef & Luay Jum’a & Muntasir Alatoom, 2023. "Identifying and Categorizing Sustainable Supply Chain Practices Based on Triple Bottom Line Dimensions: Evaluation of Practice Implementation in the Cement Industry," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    2. Marius-Daniel Roman & Cornel Sava & Dana-Adriana Iluțiu-Varvara & Roxana Mare & Lavinia-Lorena Pruteanu & Elena Maria Pică & Lorentz Jäntschi, 2022. "Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(18), pages 1-19, September.
    3. Kholofelo Clifford Malematja & Funzani Asnath Melato & Ntebogeng Sharon Mokgalaka-Fleischmann, 2023. "The Occurrence and Fate of Microplastics in Wastewater Treatment Plants in South Africa and the Degradation of Microplastics in Aquatic Environments—A Critical Review," Sustainability, MDPI, vol. 15(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5017-:d:1094806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.