IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4891-d1092510.html
   My bibliography  Save this article

An Exploratory Study of the Perception of Peer-to-Peer Energy Trading within the Power Distribution Network in the UAE

Author

Listed:
  • Ahmed Hassan Almarzooqi

    (Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Ahmed H. Osman

    (Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Mostafa Shabaan

    (Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Mohammed Nassar

    (Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

Abstract

The introduction of Smart Grid resulted in the development of various applications that are built upon the concept of bi-directional flow of electricity and data. One of the Smart Grids pillars is the Distributed Generation (DG) technologies, where customers turn to be prosumers with power generation capability. Another pillar is the Demand Side Management (DSM), which helps control the energy consumption by changing the power usage slots among other peers. DG and DSM have facilitated the sharing of excess power by customers to the grid, and then to their peers through the grid as a trading agent. Although the concept of integrating Peer-to-Peer energy trading with DSM has been explored by scholars and relatively established trading frameworks, there are very limited research performed in respect to the UAE market in terms of its acceptance and readiness towards this energy trading market. This research aims to explore the perception of Peer-to-Peer electricity trading within the Power Distribution Network in the United Arab Emirates. The study will review the Smart Grid network in the UAE and will obtain insights on people’s perception of the transition from classical electricity network to Smart Grid. It will also look into peoples’ perception regarding the transition from being electricity consumers to being electricity producers that trade among peers through semi-structured interviews. This will enhance the understanding of the energy trading market between self-generated power producers connected to a network grid, where the consumer will be utilizing the excess power available in the form of electricity trading, by importing and exporting power, without adding any additional power to the grid. The outcome of the study will provide an insight on the UAE electricity market by designing an electricity trading model that is built upon the following vital factors: power quality, supply reliability, type of integration, peers, and trading time. Furthermore, the study will provide a foundation base to the utilities, as well as individuals, when dealing with the changes in the electricity market structure.

Suggested Citation

  • Ahmed Hassan Almarzooqi & Ahmed H. Osman & Mostafa Shabaan & Mohammed Nassar, 2023. "An Exploratory Study of the Perception of Peer-to-Peer Energy Trading within the Power Distribution Network in the UAE," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4891-:d:1092510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruiz-Romero, Salvador & Colmenar-Santos, Antonio & Mur-Pérez, Francisco & López-Rey, África, 2014. "Integration of distributed generation in the power distribution network: The need for smart grid control systems, communication and equipment for a smart city — Use cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 223-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    2. Hussain Abdalla Sajwani & Bassel Soudan & Abdul Ghani Olabi, 2024. "Empowering Sustainability: Understanding Determinants of Consumer Investment in Microgrid Technology in the UAE," Energies, MDPI, vol. 17(9), pages 1-28, May.
    3. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    2. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    3. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    4. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    5. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    6. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    7. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    8. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.
    9. Luis Alejandro Arias & Edwin Rivas & Francisco Santamaria & Victor Hernandez, 2018. "A Review and Analysis of Trends Related to Demand Response," Energies, MDPI, vol. 11(7), pages 1-24, June.
    10. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    11. Ahmed WA Hammad & Ali Akbarnezhad & Assed Haddad & Elaine Garrido Vazquez, 2019. "Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities," Energies, MDPI, vol. 12(7), pages 1-23, April.
    12. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    13. Saïd-Romdhane, M. Ben & Naouar, M.W. & Belkhodja, I. Slama. & Monmasson, E., 2016. "Simple and systematic LCL filter design for three-phase grid-connected power converters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 181-193.
    14. Mohammed Adil Sait & Uchendu Eugene Chigbu & Iqbal Hamiduddin & Walter Timo De Vries, 2018. "Renewable Energy as an Underutilised Resource in Cities: Germany’s ‘Energiewende’ and Lessons for Post-Brexit Cities in the United Kingdom," Resources, MDPI, vol. 8(1), pages 1-27, December.
    15. Guillermo Ivan Pereira & Patrícia Pereira Silva & Deborah Soule, 2018. "Policy-adaptation for a smarter and more sustainable EU electricity distribution industry: a foresight analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 231-267, December.
    16. Jordehi, A. Rezaee, 2015. "Optimisation of electric distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1088-1100.
    17. Guillermo Ivan Pereira & Patrícia Pereira da Silva & Deborah Soule, 2020. "Assessment of electricity distribution business model and market design alternatives: Evidence for policy design," Energy & Environment, , vol. 31(1), pages 40-59, February.
    18. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    19. Giuseppe Fusco & Mario Russo & Michele De Santis, 2021. "Decentralized Voltage Control in Active Distribution Systems: Features and Open Issues," Energies, MDPI, vol. 14(9), pages 1-31, April.
    20. Karatepe, Engin & Ugranlı, Faruk & Hiyama, Takashi, 2015. "Comparison of single- and multiple-distributed generation concepts in terms of power loss, voltage profile, and line flows under uncertain scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 317-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4891-:d:1092510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.