IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4728-d1090007.html
   My bibliography  Save this article

Comparative Study of Effective Pretreatments on the Structural Disruption and Hydrodepolymerization of Rice Straw

Author

Listed:
  • Xiaorui Yang

    (College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China)

  • Xiaotong Li

    (College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China)

  • Jinhua Liang

    (College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China)

  • Jianliang Zhu

    (College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China)

Abstract

Rice straw (RS) is the most potentially renewable agricultural waste resource widely distributed in nature. Considering the complex recalcitrant structure and components of RS, three pretreatment methods, including high-temperature hydrothermal, medium-temperature microwave, and low-temperature cryocrushing pretreatment were performed. The components and structure of RS residues were examined and analyzed after the pretreatments. Pretreatment with hydrothermal yielded the lowest rice straw recovery (59.0%); after being pretreated at 180 °C for 10 min, the hemicellulose recovery was only 14.1%, and the removal efficiency of lignin was the largest (41.3%), which was 32.2% and 18.8% higher than that achieved from cryocrushing and microwave pretreatment, respectively. Pretreatment with cryocrushing yielded the highest recovery rates of rice straw (92.9%), hemicellulose and cellulose (88.8% and 90.4%, respectively). Results of scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and the analysis of specific surface area and apertures demonstrated that all three pretreatments could effectively disrupt the structure of RS and reduce its cellulose crystallinity. The three pretreatments were found to enhance the hydrodepolymerization of RS residues. Furthermore, cryocrushing pretreatment yielded the highest cellulose conversion rate (56.8%), and the yields of glucose, xylose, and arabinose were 29.6%, 56.2%, and 17.8%, respectively. Apart from the use of acids and enzymes, hydrodepolymerization of RS was among the few methods that can effectively degrade cellulose, presenting an ideal solution for the degradation of biomass.

Suggested Citation

  • Xiaorui Yang & Xiaotong Li & Jinhua Liang & Jianliang Zhu, 2023. "Comparative Study of Effective Pretreatments on the Structural Disruption and Hydrodepolymerization of Rice Straw," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4728-:d:1090007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4728/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patil, Ravichandra & Cimon, Caroline & Eskicioglu, Cigdem & Goud, Vaibhav, 2021. "Effect of ozonolysis and thermal pre-treatment on rice straw hydrolysis for the enhancement of biomethane production," Renewable Energy, Elsevier, vol. 179(C), pages 467-474.
    2. Kumari, Dolly & Singh, Radhika, 2020. "Ultrasonic assisted petha waste water pretreatment of rice straw for optimum production of methane and ethanol using mixed microbial culture," Renewable Energy, Elsevier, vol. 145(C), pages 682-690.
    3. Xiaorui Yang & Jing Zhao & Jinhua Liang & Jianliang Zhu, 2020. "Efficient and Selective Catalytic Conversion of Hemicellulose in Rice Straw by Metal Catalyst under Mild Conditions," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaorui Yang & Xiaotong Li & Liyan Zhu & Jinhua Liang & Jianliang Zhu, 2023. "Production of Hemicellulose Sugars Combined with the Alkaline Extraction Lignin Increased the Hydro-Depolymerization of Cellulose from Corn Cob," Sustainability, MDPI, vol. 15(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaorui Yang & Xiaotong Li & Liyan Zhu & Jinhua Liang & Jianliang Zhu, 2023. "Production of Hemicellulose Sugars Combined with the Alkaline Extraction Lignin Increased the Hydro-Depolymerization of Cellulose from Corn Cob," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    2. Sha, Hao & Zhao, Bo & Yang, Yuyi & Zhang, Yanhui & Zheng, Pengfei & Cao, Shengxian & Wang, Qing & Wang, Gong, 2023. "Enhanced anaerobic digestion of corn stover using magnetized cellulase combined with Ni-graphite coating," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4728-:d:1090007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.