IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4523-d1086434.html
   My bibliography  Save this article

Solidification Experiment of Lithium-Slag and Fine-Tailings Based Geopolymers

Author

Listed:
  • Bi-Bo Dai

    (State Key Laboratory of Safety and Health for Metal Mines, Maanshan 243000, China)

  • Yi Zou

    (Zijin Mining Group Co., Ltd., Xiamen 572000, China)

  • Yan He

    (School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China)

  • Ming Lan

    (School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China)

  • Qian Kang

    (State Key Laboratory of Safety and Health for Metal Mines, Maanshan 243000, China)

Abstract

Based on the pressure of environmental protection, more and more scientific researchers are trying to reuse aluminum–silicon-rich industrial wastes. In this study, activated lithium-slag and lead–zinc tailings were used as raw materials to prepare geopolymers at ratios of 3:7, 1:1, and 7:3. These geopolymers were initially cured for 12 h at 25 °C, 50 °C, 75 °C, and 100 °C and were then cured at room temperature to the specified ages. The compressive strength of each group of geopolymers was tested at the ages of 3 days, 7 days, and 28 days. The optimal group of samples was selected, that is, those with a ratio of lithium-slag to lead–zinc tailings of 7:3 and an initial curing temperature of 75 °C. After that, the heavy metal leaching test and porosity analysis test were carried out on the optimal group of samples, and the curing effect was considered to meet the requirements of the Chinese specifications. In addition, in order to reveal the mechanism of the chemical reaction, scanning electron microscopy and X-ray diffraction (XRD) were used to study the microstructure and hydration products of the C3 group cured samples. This study provides a new concept for the reuse of industrial wastes such as lithium-slag and fine-tailings.

Suggested Citation

  • Bi-Bo Dai & Yi Zou & Yan He & Ming Lan & Qian Kang, 2023. "Solidification Experiment of Lithium-Slag and Fine-Tailings Based Geopolymers," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4523-:d:1086434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Sisol & Dušan Kudelas & Michal Marcin & Tomáš Holub & Peter Varga, 2019. "Statistical Evaluation of Mechanical Properties of Slag Based Alkali-Activated Material," Sustainability, MDPI, vol. 11(21), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Numanuddin M. Azad & S.M. Samindi M.K. Samarakoon, 2021. "Utilization of Industrial By-Products/Waste to Manufacture Geopolymer Cement/Concrete," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    2. Nicolas Youssef & Zoubeir Lafhaj & Christophe Chapiseau, 2020. "Economic Analysis of Geopolymer Brick Manufacturing: A French Case Study," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    3. Jordi Payá & José Monzó & Josefa Roselló & María Victoria Borrachero & Alba Font & Lourdes Soriano, 2020. "Sustainable Soil-Compacted Blocks Containing Blast Furnace Slag (BFS) Activated with Olive Stone BIOMASS Ash (OBA)," Sustainability, MDPI, vol. 12(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4523-:d:1086434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.