IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4389-d1084652.html
   My bibliography  Save this article

Coupling Coordination Degree between Ecological Environment Quality and Urban Development in Chengdu–Chongqing Economic Circle Based on the Google Earth Engine Platform

Author

Listed:
  • Jiajie Zhang

    (College of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Tinggang Zhou

    (College of Geographical Sciences, Southwest University, Chongqing 400715, China)

Abstract

Rapid urbanization often exerts massive pressure on the resources relied upon by the ecological environment. It is necessary to quickly evaluate the interaction and mutual influence between regional urbanization and the ecological environment. This paper uses the Google Earth Engine (GEE) platform, integrates MODIS and night light remote sensing data sets, and computes the remote sensing-based ecological index (RSEI) and the coupling coordination degree (CCD) to measure the coupling coordination and analyze the spatiotemporal changes in the Chengdu–Chongqing Economic Circle (CCEC) for 2010, 2015, and 2020. Our results demonstrate four key findings. Firstly, the CCD varies spatially; it peaks at the Chengdu and the West Chongqing Plains, decreasing outwards along the mountains, with the lowest degree of coupling in the central, southern, and northern edge areas of the CCEC. Additionally, it has shown a trend of maintaining unchanged first and then increasing, mainly responding to policy decisions. Secondly, the changes between the different coupling levels were almost stable and mainly occurred between adjacent levels. Thirdly, the coupling level of towns spreads outwards from the centers at Chengdu and Chongqing and has an overall upward trend in time. Fourthly, in the most recent year, the coupling types present a distribution pattern of one developing axis connected with two peaks. Specifically, the environment system lagging type aggregates in Chengdu, Chongqing, and their surrounding areas, and the others mainly are economic system lagging type. The high internal coupling type also mainly occurs in the high and low coupling levels. Under this context, constructive suggestions for developmental optimization in the study area were proposed.

Suggested Citation

  • Jiajie Zhang & Tinggang Zhou, 2023. "Coupling Coordination Degree between Ecological Environment Quality and Urban Development in Chengdu–Chongqing Economic Circle Based on the Google Earth Engine Platform," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4389-:d:1084652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Simona Andreano & Roberto Benedetti & Federica Piersimoni & Giovanni Savio, 2021. "Mapping Poverty of Latin American and Caribbean Countries from Heaven Through Night-Light Satellite Images," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 533-562, August.
    2. Charlotta Mellander & José Lobo & Kevin Stolarick & Zara Matheson, 2015. "Night-Time Light Data: A Good Proxy Measure for Economic Activity?," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-18, October.
    3. Huan Tang & Jiawei Fang & Ruijie Xie & Xiuli Ji & Dayong Li & Jing Yuan, 2022. "Impact of Land Cover Change on a Typical Mining Region and Its Ecological Environment Quality Evaluation Using Remote Sensing Based Ecological Index (RSEI)," Sustainability, MDPI, vol. 14(19), pages 1-22, October.
    4. Jiangjun Wan & Yuxin Li & Chunchi Ma & Tian Jiang & Yi Su & Lingqing Zhang & Xueqian Song & Haiying Sun & Ziming Wang & Yutong Zhao & Kaili Zhang & Jinxiu Yang, 2021. "Measurement of Coupling Coordination Degree and Spatio-Temporal Characteristics of the Social Economy and Ecological Environment in the Chengdu–Chongqing Urban Agglomeration under High-Quality Develop," IJERPH, MDPI, vol. 18(21), pages 1-18, November.
    5. Rahman, Mohammad Mafizur & Alam, Khosrul, 2021. "Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh," Renewable Energy, Elsevier, vol. 172(C), pages 1063-1072.
    6. Tingting Li & Zengzhang Guo & Chao Ma, 2022. "Dynamic Characteristics of Urbanization Based on Nighttime Light Data in China’s “Plain–Mountain Transition Zone”," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boslett, Andrew & Hill, Elaine & Ma, Lala & Zhang, Lujia, 2021. "Rural light pollution from shale gas development and associated sleep and subjective well-being," Resource and Energy Economics, Elsevier, vol. 64(C).
    2. Fei Yang & Chunchen Wang, 2023. "Clean energy, emission trading policy, and CO2 emissions: Evidence from China," Energy & Environment, , vol. 34(5), pages 1657-1673, August.
    3. Natalya Rybnikova & Boris Portnov, 2015. "Using light-at-night (LAN) satellite data for identifying clusters of economic activities in Europe," Letters in Spatial and Resource Sciences, Springer, vol. 8(3), pages 307-334, November.
    4. Krittaya Sangkasem & Nattapong Puttanapong, 2022. "Analysis of spatial inequality using DMSP‐OLS nighttime‐light satellite imageries: A case study of Thailand," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 828-849, August.
    5. Dedy Rahman Wijaya & Ni Luh Putu Satyaning Pradnya Paramita & Ana Uluwiyah & Muhammad Rheza & Annisa Zahara & Dwi Rani Puspita, 2022. "Estimating city-level poverty rate based on e-commerce data with machine learning," Electronic Commerce Research, Springer, vol. 22(1), pages 195-221, March.
    6. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    7. Dickinson, Jeffrey, 2020. "Planes, Trains, and Automobiles: What Drives Human-Made Light?," MPRA Paper 103504, University Library of Munich, Germany.
    8. Bruno Ibekilo & Chukwunonso Ekesiobi & Precious Muhammed Emmanuel, 2023. "Heterogeneous assessment of urbanisation, energy consumption and environmental pollution in Africa: the role of regulatory quality," Economic Change and Restructuring, Springer, vol. 56(6), pages 4421-4444, December.
    9. Wu, Yu & Sills, Erin O., 2018. "The Evolving Relationship between Market Access and Deforestation on the Amazon Frontier," 2018 Annual Meeting, August 5-7, Washington, D.C. 274317, Agricultural and Applied Economics Association.
    10. Jiang, Yi, 2020. "Spatial Dynamics and Driving Forces of Asian Cities," ADB Economics Working Paper Series 618, Asian Development Bank.
    11. Basem Aljoumani & Jose A. Sanchez-Espigares & Björn Kluge & Gerd Wessolek & Birgit Kleinschmit, 2022. "Analyzing Temporal Trends of Urban Evaporation Using Generalized Additive Models," Land, MDPI, vol. 11(4), pages 1-16, March.
    12. Iqbal, Mubasher & Arshed, Noman & Chan, Ling-Foon, 2024. "Exploring the dynamics: Biodiversity impacts of natural resource extraction with moderating influence of FinTech for sustainable practices in resource-rich nations," Resources Policy, Elsevier, vol. 91(C).
    13. Yuxin Meng & Lu Liu & Jianlong Wang & Qiying Ran & Xiaodong Yang & Jianliang Shen, 2021. "Assessing the Impact of the National Sustainable Development Planning of Resource-Based Cities Policy on Pollution Emission Intensity: Evidence from 270 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    14. Masayuki Kudamatsu, 2019. "Observing Economic Growth in Unrecognized States with Nighttime Light," OSIPP Discussion Paper 19E002, Osaka School of International Public Policy, Osaka University.
    15. Bauer, Vincent & Platas, Melina R. & Weinstein, Jeremy M., 2022. "Legacies of Islamic Rule in Africa: Colonial Responses and Contemporary Development," World Development, Elsevier, vol. 152(C).
    16. Anna Bruederle & Roland Hodler, 2018. "Nighttime lights as a proxy for human development at the local level," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-22, September.
    17. Mohammad Rafiqul Islam & Masud Alam & Munshi Naser .Ibne Afzal & Sakila Alam, 2021. "Nighttime Light Intensity and Child Health Outcomes in Bangladesh," Papers 2108.00926, arXiv.org, revised Sep 2022.
    18. Mikhaylov Andrey & Mikhaylova Anna & Alsynbaev Kamil & Bryksin Vitaliy & Hvaley Dmitry, 2021. "Remote-sensing technology in mapping socio-economic divergence of Europe," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 52(52), pages 69-84, June.
    19. Bohan Chai & Junwei Gao & Lingying Pan & Yishu Chen, 2021. "Research on the Impact Factors of Green Economy of China—From the Perspective of System and Foreign Direct Investment," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    20. Lin Li & Kaixu Zhao & Xinyu Wang & Sidong Zhao & Xingguang Liu & Weiwei Li, 2022. "Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi," Land, MDPI, vol. 11(3), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4389-:d:1084652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.