IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3638-d1070474.html
   My bibliography  Save this article

Real-Time Power Control of Doubly Fed Induction Generator Using Dspace Hardware

Author

Listed:
  • Manale Bouderbala

    (Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco)

  • Hala Alami Aroussi

    (Ecole Supérieur de Technologie, Mohamed Premier University, Oujda 60000, Morocco)

  • Badre Bossoufi

    (Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco)

  • Mohammed Karim

    (Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco)

Abstract

Numerous studies have been undertaken to evaluate wind energy systems’ active and reactive power control, the energy produced, and their its link to distribution networks. This research makes a novel contribution to the discipline in this setting. The novelty of this work aims to design a new wind emulator and design a power control approach for a doubly fed induction generator (DFIG)-based wind system. A description of the system was provided first. Secondly, the control strategy was described in detail. Then, it was applied to both converters (machine and grid sides). Three stages were used to evaluate the control solution: (1) a MATLAB/Simulink simulation to validate the reference’s persistence (for both real and step wind speeds) and the system’s robustness, (2) implementation in real-time on a dSPACE-DS1104 board linked to an experimental laboratory bench, and (3) overlapped comparison experimental and simulated data to conduct a thorough quantitative and qualitative analysis using the root-mean-square error measures. The simulation and experimental findings demonstrate that the suggested model is valid and presents an excellent correlation between experimental and simulated results regarding wind speed variation.

Suggested Citation

  • Manale Bouderbala & Hala Alami Aroussi & Badre Bossoufi & Mohammed Karim, 2023. "Real-Time Power Control of Doubly Fed Induction Generator Using Dspace Hardware," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3638-:d:1070474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mensou, Sara & Essadki, Ahmed & Nasser, Tamou & Idrissi, Badre Bououlid & Ben Tarla, Lahssan, 2020. "Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1759-1771.
    2. José Antonio Cortajarena & Oscar Barambones & Patxi Alkorta & Jon Cortajarena, 2021. "Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    2. Agha Kashkooli, M.R. & Jovanović, Milutin G., 2021. "Sensorless adaptive control of brushless doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 177(C), pages 932-941.
    3. Zouheyr, Dekali & Lotfi, Baghli & Abdelmadjid, Boumediene, 2021. "Improved hardware implementation of a TSR based MPPT algorithm for a low cost connected wind turbine emulator under unbalanced wind speeds," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3638-:d:1070474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.