IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3333-d1065333.html
   My bibliography  Save this article

Dynamic Strength Characteristics of Cement-Improved Silty Clay under the Effect of Freeze-Thaw Cycles

Author

Listed:
  • Zheng Ma

    (Xingtai Construction Group Co., Ltd., Hohhot 010000, China)

  • Zhen Xing

    (Xingtai Construction Group Co., Ltd., Hohhot 010000, China)

  • Yingying Zhao

    (School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China)

  • Yiru Hu

    (School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)

Abstract

In the seasonally frozen soil regions of northern China, silty clay is widely used as a subgrade bed filler in heavy-haul railway construction. In this paper, the influence of freeze-thaw cycles on the dynamic strength properties (strength parameters and dynamic critical stress) of silty clay fillers before and after cement improvement was investigated by a series of dynamic triaxial tests under different confining pressure conditions, and the test results were quantified to analyze the improvement effects of cement improvement. The results show that cement modification can significantly improve the dynamic strength parameters (dynamic strength, dynamic strength index, and critical dynamic stress) of silty clay before and after freezing and thawing. The dynamic strength of cement-improved silty clay (CSC) was improved by 2.8 to 5.2 times compared to silty clay, and a high level of dynamic strength can be maintained after multiple freeze-thaw cycles. The dynamic cohesion was increased by 1.5 to 3 times and the dynamic internal friction angle was increased by 1.5 to 4 times. The attenuation rate of the critical dynamic stress of CSC with the number of freeze-thaw cycles was greater than that of the plain filler, while the relative lifting effect of the critical dynamic stress of the cement improvement was significant after three freeze-thaw cycles, and the maximum value was reached at a cycle number of three, with a relative increase of 2.5 times. A new index of critical dynamic stress attenuation of CSC for freeze-thaw cycles was introduced, which provides a useful reference for subgrade improvement and reinforcement along the silty clay railway in northern China.

Suggested Citation

  • Zheng Ma & Zhen Xing & Yingying Zhao & Yiru Hu, 2023. "Dynamic Strength Characteristics of Cement-Improved Silty Clay under the Effect of Freeze-Thaw Cycles," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3333-:d:1065333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haibin Wei & Qinglin Li & Leilei Han & Shuanye Han & Fuyu Wang & Yangpeng Zhang & Zhao Chen, 2019. "Experimental Research on Deformation Characteristics of Using Silty Clay Modified by Oil Shale Ash and Fly Ash as the Subgrade Material after Freeze-Thaw Cycles," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Z. Izzo & Marta Miletić, 2019. "Sustainable Improvement of the Crack Resistance of Cohesive Soils," Sustainability, MDPI, vol. 11(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3333-:d:1065333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.