IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2782-d1056806.html
   My bibliography  Save this article

Effect of Sludge Content on the Decomposition of Different Types of Food Waste

Author

Listed:
  • Mumtahina Binte Latif

    (Atwell, LLC, 9001 Airport Fwy Suite 660, North Richland Hills, TX 76180, USA)

  • Md Azijul Islam

    (Department of Civil Engineering, The University of Texas at Arlington, 701 W Nedderman Dr., Arlington, TX 76019, USA
    Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Md Sahadat Hossain

    (Department of Civil Engineering, The University of Texas at Arlington, 701 W Nedderman Dr., Arlington, TX 76019, USA)

  • Sehneela Sara Aurpa

    (Department of Civil Engineering, The University of Texas at Arlington, 701 W Nedderman Dr., Arlington, TX 76019, USA)

Abstract

Food waste, which is the second largest component in landfills, generates excessive amounts of leachate and greenhouse gas. As a result, it has recently become a severe concern, mostly in the developing countries for its adverse impact on the environment. The addition of nutrients to organic waste limits the accumulation of volatile fatty acid (VFA) and accelerates the production of energy from food waste. The objective of the current study is to find out the effects of sludge addition on the decomposition and gas generation of separate components of food waste. This study was conducted for four combinations of reactors: two pairs containing meat and grain with the addition of a sludge content of 20% and 30%, respectively, as inoculum; another two pairs of reactors containing fruits and vegetables with a sludge content of 20% and 30%, respectively. Over the operation period, pH, volume, COD, and VFA tests were conducted for leachate while composition and volume measurements were done for the generated gas. Based on the results, it is observed that addition of sludge accelerated the decomposition of fruit and vegetable waste due to limited VFA accumulation compared to meat and grain. The maximum methane production was found in fruits and vegetable reactors at a rate of 6.7 L of methane per pound of food waste. For fruit and vegetable reactors, the CH 4 :CO 2 ratio increased to as high as 8.5. On the other hand, for the meat and grain reactors, the increase in CH 4 :CO 2 ratio was insignificant as they were in the lag phase.

Suggested Citation

  • Mumtahina Binte Latif & Md Azijul Islam & Md Sahadat Hossain & Sehneela Sara Aurpa, 2023. "Effect of Sludge Content on the Decomposition of Different Types of Food Waste," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2782-:d:1056806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navarro Ferronato & Vincenzo Torretta, 2019. "Waste Mismanagement in Developing Countries: A Review of Global Issues," IJERPH, MDPI, vol. 16(6), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Râpă & Raluca Nicoleta Darie-Niță & George Coman, 2024. "Valorization of Fruit and Vegetable Waste into Sustainable and Value-Added Materials," Waste, MDPI, vol. 2(3), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leslier Valenzuela-Fernández & Manuel Escobar-Farfán, 2022. "Zero-Waste Management and Sustainable Consumption: A Comprehensive Bibliometric Mapping Analysis," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
    2. Asif Iqbal & Abdullah Yasar & Abdul-Sattar Nizami & Rafia Haider & Faiza Sharif & Imran Ali Sultan & Amtul Bari Tabinda & Aman Anwer Kedwaii & Muhammad Murtaza Chaudhary, 2022. "Municipal Solid Waste Collection and Haulage Modeling Design for Lahore, Pakistan: Transition toward Sustainability and Circular Economy," Sustainability, MDPI, vol. 14(23), pages 1-39, December.
    3. Giovanni Vinti & Valerie Bauza & Thomas Clasen & Kate Medlicott & Terry Tudor & Christian Zurbrügg & Mentore Vaccari, 2021. "Municipal Solid Waste Management and Adverse Health Outcomes: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-26, April.
    4. Jatau Ramond Yohanna, 2023. "Effluent Pollution in Custodial Centres and its Environs in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 1341-1352, February.
    5. Victor Fredrick & Vandu Umaru Lazarus & Ishaku Yahaya & Ibrahim Hyedma Bwala & Ajanson, Samuel Sule & Buhari Isa Uba, 2023. "Impact of Public Solid Waste Disposal Dump Sites: A Threat to Residence of Yelwa Tsakani, Bauchi," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 507-522, February.
    6. Takunda Shabani & Steven Jerie & Timothy Vurayayi Mutekwa & Tapiwa Shabani, 2024. "Electronic Waste: 21st Century Scenario in Zimbabwe—A Review," Circular Economy and Sustainability, Springer, vol. 4(2), pages 1269-1284, June.
    7. Vladimír Frišták & Diana Bošanská & Vladimír Turčan & Martin Pipíška & Christoph Pfeifer & Gerhard Soja, 2022. "Relevance of Pyrolysis Products Derived from Sewage Sludge for Soil Applications," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    8. Anna Mazzi & Michela Sciarrone & Roberto Raga, 2022. "Environmental Performance of Semi-Aerobic Landfill by Means of Life Cycle Assessment Modeling," Energies, MDPI, vol. 15(17), pages 1-17, August.
    9. Yijia Wang & Senwei Huang & Jia Liu, 2023. "Research on the Rural Environmental Governance and Interaction Effects of Farmers under the Perspective of Circular Economy—Evidence from Three Provinces of China," Sustainability, MDPI, vol. 15(17), pages 1-20, September.
    10. Sabah Mariyam & Logan Cochrane & Shifa Zuhara & Gordon McKay, 2022. "Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    11. Mohd Faiz Ibrahim & Rozita Hod & Haidar Rizal Toha & Azmawati Mohammed Nawi & Idayu Badilla Idris & Hanizah Mohd Yusoff & Mazrura Sahani, 2021. "The Impacts of Illegal Toxic Waste Dumping on Children’s Health: A Review and Case Study from Pasir Gudang, Malaysia," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    12. Marco Bardus & May A. Massoud, 2022. "Predicting the Intention to Sort Waste at Home in Rural Communities in Lebanon: An Application of the Theory of Planned Behaviour," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    13. Alessio Conti & Elena Viottini & Rosanna Irene Comoretto & Chiara Piovan & Barbara Martin & Beatrice Albanesi & Marco Clari & Valerio Dimonte & Sara Campagna, 2024. "The Effectiveness of Educational Interventions in Improving Waste Management Knowledge, Attitudes, and Practices among Healthcare Workers: A Systematic Review and Meta-Analysis," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
    14. Sabbir Ahmed & Sameera Mubarak & Jia Tina Du & Santoso Wibowo, 2022. "Forecasting the Status of Municipal Waste in Smart Bins Using Deep Learning," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    15. Hang Yin & Yixiong Huang & Kuiming Wang, 2021. "How Do Environmental Concerns and Governance Performance Affect Public Environmental Participation: A Case Study of Waste Sorting in Urban China," IJERPH, MDPI, vol. 18(19), pages 1-16, September.
    16. Saowanee Wijitkosum, 2023. "Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application," Energies, MDPI, vol. 16(2), pages 1-16, January.
    17. Benett Siyabonga Madonsela & Machete Machete & Karabo Shale, 2024. "Indigenous Knowledge Systems of Solid Waste Management in Bushbuckridge Rural Communities, South Africa," Waste, MDPI, vol. 2(3), pages 1-19, August.
    18. Emily Ying Yang Chan & Tiffany Sze Tung Sham & Tayyab Salim Shahzada & Caroline Dubois & Zhe Huang & Sida Liu & Kevin K.C. Hung & Shelly L.A. Tse & Kin On Kwok & Pui-Hong Chung & Ryoma Kayano & Rajib , 2020. "Narrative Review on Health-EDRM Primary Prevention Measures for Vector-Borne Diseases," IJERPH, MDPI, vol. 17(16), pages 1-28, August.
    19. Katarzyna Klimkiewicz & Anna Dubel & Katarzyna Południak-Gierz, 2023. "Supporting Environmentally Conscious Consumer Sales Law by Life-cycle Thinking," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 17(2), June.
    20. Ren-Shou Yu & Sher Singh, 2023. "Microplastic Pollution: Threats and Impacts on Global Marine Ecosystems," Sustainability, MDPI, vol. 15(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2782-:d:1056806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.