IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2706-d1055603.html
   My bibliography  Save this article

Simplified Life Cycle Cost Estimation of Low-Rise Steel Buildings Using Fundamental Period

Author

Listed:
  • Mohamed Noureldin

    (Department of Civil & Architectural Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea)

  • Jinkoo Kim

    (Department of Civil & Architectural Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea)

Abstract

In the current study, a simplified seismic life cycle cost (LCC) estimation procedure is proposed utilizing the mean values of the structure’s main input variables. The main input variables of the building are used for constructing a relationship between the structural fundamental period (T) and an average estimation of the LCC (LCCavg). Using the actual building properties related to damage probability, the T–LCCavg relationship is used to obtain the final LCC (LCCfin). The equivalent single degree of freedom (ESDOF) model and SAC-FEMA framework are utilized for damage probability calculation. The dispersion measure in demand is approximately calculated based on the mean plus one standard deviation of the seismic hazard response spectrum, and, then, verified through nonlinear time history (NLTH) analyses of the original structure. Five and three-story steel buildings are used as case studies for verification of the proposed method. The analysis results indicate that the proposed procedure provides reasonable LCC estimations for low-rise buildings dominated by the fundamental mode of vibration.

Suggested Citation

  • Mohamed Noureldin & Jinkoo Kim, 2023. "Simplified Life Cycle Cost Estimation of Low-Rise Steel Buildings Using Fundamental Period," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2706-:d:1055603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Mahdavi & K. Nasrollahzadeh & M. A. Hariri-Ardebili, 2019. "Optimal FRP Jacket Placement in RC Frame Structures Towards a Resilient Seismic Design," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goran Vizentin & Darko Glujić & Vedrana Špada, 2021. "Effect of Time-Real Marine Environment Exposure on the Mechanical Behavior of FRP Composites," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    2. Emmanouil Golias & Adamantis G. Zapris & Violetta K. Kytinou & George I. Kalogeropoulos & Constantin E. Chalioris & Chris G. Karayannis, 2021. "Effectiveness of the Novel Rehabilitation Method of Seismically Damaged RC Joints Using C-FRP Ropes and Comparison with Widely Applied Method Using C-FRP Sheets—Experimental Investigation," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    3. Bu-Seog Ju & Hoyoung Son & Sangwoo Lee & Shinyoung Kwag, 2022. "Estimating Seismic Demands of a Single-Door Electrical Cabinet System Based on the Performance Limit-State of Concrete Shear Wall Structures," Sustainability, MDPI, vol. 14(9), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2706-:d:1055603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.