IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2402-d1050149.html
   My bibliography  Save this article

Seismic Responses of Aqueducts Using a New Type of Self-Centering Seismic Isolation Bearing

Author

Listed:
  • Tianbo Peng

    (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
    College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Yang Dong

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

Abstract

An aqueduct is a bridge-like structure that supports a canal passing over a river or low ground, and it is an important part of a water conveyance system. Aqueduct piers are extremely vulnerable to damage during strong earthquakes that can result in structural collapse. Further, excessive seismic displacement will also fracture an aqueduct’s rubber water-stop and interrupt the normal service of an aqueduct after an earthquake. Therefore, improving the seismic capacity and post-earthquake resilience of aqueducts is of great importance. In this paper, a new type of self-centering seismic isolation bearing, the inclined plane guide bearing (IPGB), is proposed for the seismic design of aqueducts, and it is studied both experimentally and numerically. Firstly, a typical aqueduct project and the setting of the IPGBs are introduced. Then, the test design, test cases, and test results of shaking table tests for two different pier-height aqueducts are presented. The seismic responses of the two models are studied, and the results show that the aqueduct that used IPGBs has a smaller bearing displacement and better post-earthquake resilience. Finally, a numerical simulation method applicable to aqueducts using IPGBs is proposed, and its accuracy is verified by comparing the results of the numerical simulation and the shaking table test.

Suggested Citation

  • Tianbo Peng & Yang Dong, 2023. "Seismic Responses of Aqueducts Using a New Type of Self-Centering Seismic Isolation Bearing," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2402-:d:1050149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Pagano & Raffaele Giordano & Ivan Portoghese & Umberto Fratino & Michele Vurro, 2014. "A Bayesian vulnerability assessment tool for drinking water mains under extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2193-2227, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apurva Pamidimukkala & Sharareh Kermanshachi & Nikhitha Adepu & Elnaz Safapour, 2021. "Resilience in Water Infrastructures: A Review of Challenges and Adoption Strategies," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    2. Kamrani, Kazem & Roozbahani, Abbas & Hashemy Shahdany, Seied Mehdy, 2020. "Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Dawid Szpak, 2020. "Method for Determining the Probability of a Lack of Water Supply to Consumers," Energies, MDPI, vol. 13(20), pages 1-16, October.
    4. Massoud Tabesh & Abbas Roozbahani & Bardia Roghani & Niousha Rasi Faghihi & Reza Heydarzadeh, 2018. "Risk Assessment of Factors Influencing Non-Revenue Water Using Bayesian Networks and Fuzzy Logic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3647-3670, September.
    5. Mao, Quan & Li, Nan & Peña-Mora, Feniosky, 2019. "Quality function deployment-based framework for improving the resilience of critical infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    6. Krzysztof Boryczko & Janusz Rak, 2020. "Method for Assessment of Water Supply Diversification," Resources, MDPI, vol. 9(7), pages 1-15, July.
    7. Alex Coletti & Antonio De Nicola & Maria Luisa Villani, 2016. "Building climate change into risk assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1307-1325, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2402-:d:1050149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.