IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2125-d1044539.html
   My bibliography  Save this article

Plasma Treatment as a Sustainable Method for Enhancing the Wettability of Jute Fabrics

Author

Listed:
  • Aleksandra Ivanovska

    (Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia)

  • Marija Milošević

    (Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia)

  • Bratislav Obradović

    (Faculty of Physics, University of Belgrade, Studentski Trg 12, 11001 Belgrade, Serbia)

  • Zorica Svirčev

    (Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
    Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland)

  • Mirjana Kostić

    (Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia)

Abstract

In this paper, raw jute fabric was subjected to atmospheric pressure dielectric barrier discharge (at 150 or 300 Hz) to enhance its wettability, i.e., capillarity and wetting time. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM) were used to assess the changes in the fabrics’ surface chemistry and morphology induced by plasma treatments. The obtained results revealed that both plasma treatments enhanced the wettability of jute fabrics, which could be ascribed to the changes in the fibers’ surface chemistry (the removal of non-cellulosic components, exposure of the cellulose molecules, and oxidation) and morphology (increased roughness due to etching of the surface layers and partial fibrillation). Capillary rise heights increased by approximately 1.8 and 1.9 times, and wetting times were 35 and 34 times shorter 24 h after the plasma treatment at 150 and 300 Hz, respectively. Special attention was given to the aging effect of plasma treatment indicated no significant changes in the fabrics’ capillarity and wetting time after 28 and 7 days, respectively, proving the durability of the effects of plasma treatment. Plasma-treated raw jute fabrics could be used as water-binding geo-prebiotic polysaccharide supports to provide the necessary water for the initial growth of cyanobacterial biocrusts. The lack of moisture is the main constraint in biocrust development after cyanobacterial inoculation. The combination of such water-supportive fabrics and cyanobacterial strains could be used for the rehabilitation of various degraded lands, sediments, and substrates, as well as for air and water pollution control.

Suggested Citation

  • Aleksandra Ivanovska & Marija Milošević & Bratislav Obradović & Zorica Svirčev & Mirjana Kostić, 2023. "Plasma Treatment as a Sustainable Method for Enhancing the Wettability of Jute Fabrics," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2125-:d:1044539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Geß & Manuel Lorenz & Anna Tolsdorf & Stefan Albrecht, 2021. "Environmental Impacts of Renewable Insulation Materials," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    2. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    3. Huaying He & Weikang Zhou & Jing Gao & Fan Wang & Shaobing Wang & Yan Fang & Yang Gao & Wei Chen & Wen Zhang & Yunxiang Weng & Zhengchao Wang & Haiqing Liu, 2022. "Efficient, biosafe and tissue adhesive hemostatic cotton gauze with controlled balance of hydrophilicity and hydrophobicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Yousaf Arshad & Muhammad Azam Saeed & Muhammad Wasim Tahir & Ahsan Raza & Anam Suhail Ahmad & Fasiha Tahir & Bartłomiej Borkowski & Tadeusz Mączka & Lukasz Niedzwiecki, 2023. "Role of Experimental, Modeling, and Simulation Studies of Plasma in Sustainable Green Energy," Sustainability, MDPI, vol. 15(19), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Pescari & Mircea Merea & Alexandru Pitroacă & Clara-Beatrice Vilceanu, 2022. "A Particular Case of Urban Sustainability: Comparison Study of the Efficiency of Multiple Thermal Insulations for Buildings," Sustainability, MDPI, vol. 14(23), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2125-:d:1044539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.