IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2055-d1043274.html
   My bibliography  Save this article

From Natural Woods to High Density Materials: An Ecofriendly Approach

Author

Listed:
  • Francesca Gullo

    (Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio, 5-13100 Vercelli, Italy)

  • Andrea Marangon

    (Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio, 5-13100 Vercelli, Italy)

  • Alessandro Croce

    (Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio, 5-13100 Vercelli, Italy)

  • Giorgio Gatti

    (Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio, 5-13100 Vercelli, Italy)

  • Maurizio Aceto

    (Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio, 5-13100 Vercelli, Italy)

Abstract

Recently, different methods have been proposed to develop wood materials, termed “densified woods”, with density increment and improvement in mechanical proprieties. Almost all the proposed methods involve the use of reducing agents and strong bases. In this work, a new method has been developed involving the use of less polluting agents. The formation of densified woods is divided into two steps: delignification involves the removal of lignin, hemicelluloses, and shorter chains of cellulose, whereas densification involves the plastering of the delignified woods. The obtained materials showed a density increase of two to four times. The obtained densified woods were characterized by spectroscopic, microscopic, and thermogravimetric techniques and mechanical tests. The characterizations aimed at determining the variations of chemical and structural compositions of the samples after delignification and densification processes, showing, respectively, a decrease in lignin and a significant increase in the density and force necessary to bring the materials to yield. The final density of wood was two to three times higher and the force necessary to reach the yield point reached more than three times the initial one for some of the studied samples. These characterizations showed how different woods, with different properties, reach comparable densities and final mechanical properties after delignification and densification process. The increased mechanical properties of the materials allow their application in place of other composite woody materials.

Suggested Citation

  • Francesca Gullo & Andrea Marangon & Alessandro Croce & Giorgio Gatti & Maurizio Aceto, 2023. "From Natural Woods to High Density Materials: An Ecofriendly Approach," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2055-:d:1043274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2055/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2055-:d:1043274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.