IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1655-d1036131.html
   My bibliography  Save this article

A Behavior Change Mining Method Based on Complete Logs with Hidden Transitions and Their Applications in Disaster Chain Risk Analysis

Author

Listed:
  • Shuya Sun

    (Research Institute for Risk Governance and Emergency Decision Making, School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
    School of Mathematics and Finance, Chuzhou University, Chuzhou 239000, China)

  • Qingsheng Li

    (School of Business, Linyi University, Linyi 276005, China)

Abstract

The aim of change mining is to discover changes in process models based on execution data recorded in event logs. There may be hidden transitions in the process models related to, for example, business integration and user requirements that do not exist in event logs. Behavioral change mining in the case of hidden transitions is a fundamental problem in the field of change mining. Existing research on change mining has not considered the effects of hidden transitions. This paper proposes a novel method based on complete logs with hidden transitions for mining behavioral changes. We analyze the behavioral relations of activities based on changed logs under the condition that the original model is unknown. Log-driven change mining is realized by calculating the log behavioral profile, minimum successor relation, and log-weighted coefficient, which allows the mining of hidden transitions, as well as changed behavioral relations. Finally, this method is applied to disaster chain risk analysis, and the evolution of disaster chains in different scenarios is mined from disaster logs to determine the type of disaster chain. The results of this paper provide a scientific basis for the strategy of chain-cutting disaster mitigation in the emergency management of disaster chains.

Suggested Citation

  • Shuya Sun & Qingsheng Li, 2023. "A Behavior Change Mining Method Based on Complete Logs with Hidden Transitions and Their Applications in Disaster Chain Risk Analysis," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1655-:d:1036131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asef Pourmasoumi & Mohsen Kahani & Ebrahim Bagheri, 2017. "Mining variable fragments from process event logs," Information Systems Frontiers, Springer, vol. 19(6), pages 1423-1443, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit V. Deokar & Jie Tao, 2021. "OrgMiner: A Framework for Discovering User-Related Process Intelligence from Event Logs," Information Systems Frontiers, Springer, vol. 23(3), pages 753-772, June.
    2. Amit V. Deokar & Jie Tao, 0. "OrgMiner: A Framework for Discovering User-Related Process Intelligence from Event Logs," Information Systems Frontiers, Springer, vol. 0, pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1655-:d:1036131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.