IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1509-d1033973.html
   My bibliography  Save this article

Utilization and Verification of Imaging Technology in Smart Bridge Inspection System: An Application Study

Author

Listed:
  • Youngjin Choi

    (School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Yangrok Choi

    (School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Jun-sang Cho

    (Research Institute of Korea Expressway Corporation, Hwaseong-si 18489, Republic of Korea)

  • Dongwoo Kim

    (Miraecity, Seoul 08502, Republic of Korea)

  • Jungsik Kong

    (School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea)

Abstract

Image-based inspection technologies involving various sensors and unmanned aerial vehicles are widely used for facility inspections. The level of data analysis technology required to process the acquired data algorithmically (e.g., image processing and machine learning) is also increasing. However, compared with their development rate, the applicability of new inspection technologies to actual bridges is low. In addition, only individual technologies (for inspecting specific deteriorations) are being developed; integrated inspection systems have been neglected. In this study, the bottom-up method (which systematizes the applications of a specific technology) is avoided; instead, several technologies are summarized and a system of preliminary frameworks is established using a top-down method, and the applicability of each technology is verified in a testbed. To this end, the utility of the initially constructed technical system was assessed for two bridges; then, a strong utility technology was selected and applied to an offshore bridge under extreme conditions. The data obtained from the inspection were accumulated in a database, and a 3D-type external inspection map was produced and applied in the subsequent inspection via virtual and augmented reality equipment. Through the system, it was possible to obtain cost-effective and objective bridge inspection images in extreme environments, and the applicability of various technologies was verified.

Suggested Citation

  • Youngjin Choi & Yangrok Choi & Jun-sang Cho & Dongwoo Kim & Jungsik Kong, 2023. "Utilization and Verification of Imaging Technology in Smart Bridge Inspection System: An Application Study," Sustainability, MDPI, vol. 15(2), pages 1-31, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1509-:d:1033973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youngjin Choi & Jinhyuk Lee & Jungsik Kong, 2020. "Performance Degradation Model for Concrete Deck of Bridge Using Pseudo-LSTM," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    2. Martin Libra & Milan Daneček & Jan Lešetický & Vladislav Poulek & Jan Sedláček & Václav Beránek, 2019. "Monitoring of Defects of a Photovoltaic Power Plant Using a Drone," Energies, MDPI, vol. 12(5), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    2. Guo, Zhiling & Zhuang, Zhan & Tan, Hongjun & Liu, Zhengguang & Li, Peiran & Lin, Zhengyuan & Shang, Wen-Long & Zhang, Haoran & Yan, Jinyue, 2023. "Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets," Renewable Energy, Elsevier, vol. 219(P1).
    3. Thiago B. Murari & Aloisio S. Nascimento Filho & Marcelo A. Moret & Sergio Pitombo & Alex A. B. Santos, 2020. "Self-Affine Analysis of ENSO in Solar Radiation," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    5. Mireille B. Tadie Fogaing & Arman Hemmati & Carlos F. Lange & Brian A. Fleck, 2019. "Performance of Turbulence Models in Simulating Wind Loads on Photovoltaics Modules," Energies, MDPI, vol. 12(17), pages 1-16, August.
    6. Odysseas Tsafarakis & Kostas Sinapis & Wilfried G. J. H. M. van Sark, 2019. "A Time-Series Data Analysis Methodology for Effective Monitoring of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 12(9), pages 1-18, May.
    7. Xin Gao & Gengxin Duan & Chunguang Lan, 2021. "Bayesian Updates for an Extreme Value Distribution Model of Bridge Traffic Load Effect Based on SHM Data," Sustainability, MDPI, vol. 13(15), pages 1-15, August.
    8. Roman Trach & Victor Moshynskyi & Denys Chernyshev & Oleksandr Borysyuk & Yuliia Trach & Pavlo Striletskyi & Volodymyr Tyvoniuk, 2022. "Modeling the Quantitative Assessment of the Condition of Bridge Components Made of Reinforced Concrete Using ANN," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    9. Binqiang Guo & Renzhi Wang & Chen Lu & Weijian Shi & Qingfei Gao, 2021. "Numerical Investigation on the Dynamic Performance of Steel–Concrete Composite Continuous Rigid Bridges Subjected to Moving Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    10. Carlos Cacciuttolo & Ximena Guardia & Eunice Villicaña, 2024. "Implementation of Renewable Energy from Solar Photovoltaic (PV) Facilities in Peru: A Promising Sustainable Future," Sustainability, MDPI, vol. 16(11), pages 1-40, May.
    11. Şevik, Seyfi & Aktaş, Ahmet, 2022. "Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays," Renewable Energy, Elsevier, vol. 181(C), pages 490-503.
    12. Murat Altıntaş & Serdal Arslan, 2021. "The Study of Dust Removal Using Electrostatic Cleaning System for Solar Panels," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    13. Di Tommaso, Antonio & Betti, Alessandro & Fontanelli, Giacomo & Michelozzi, Benedetto, 2022. "A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 193(C), pages 941-962.
    14. Myeongchan Oh & Hyeong-Dong Park, 2019. "Optimization of Solar Panel Orientation Considering Temporal Volatility and Scenario-Based Photovoltaic Potential: A Case Study in Seoul National University," Energies, MDPI, vol. 12(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1509-:d:1033973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.