IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1233-d1029944.html
   My bibliography  Save this article

Plant Disease Classification and Adversarial Attack Using SimAM-EfficientNet and GP-MI-FGSM

Author

Listed:
  • Haotian You

    (School of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China)

  • Yufang Lu

    (School of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China)

  • Haihua Tang

    (School of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China)

Abstract

Plant diseases have received common attention, and deep learning has also been applied to plant diseases. Deep neural networks (DNNs) have achieved outstanding results in plant diseases. Furthermore, DNNs are very fragile, and adversarial attacks in image classification deserve much attention. It is important to detect the robustness of DNNs through adversarial attacks. The paper firstly improves the EfficientNet by adding the SimAM attention module. The SimAM-EfficientNet is proposed in this paper. The experimental results show that the accuracy of the improved model on PlantVillage reaches 99.31%. The accuracy of ResNet50 is 98.33%. The accuracy of ResNet18 is 98.31%. The accuracy of DenseNet is 98.90%. In addition, the GP-MI-FGSM adversarial attack algorithm improved by gamma correction and image pyramid in this paper can increase the success rate of attack. The model proposed in this paper has an error rate of 87.6% whenattacked by the GP-MI-FGSM adversarial attack algorithm. The success rate of GP-MI-FGSM proposed in this paper is higher than other adversarial attack algorithms, including FGSM, I-FGSM, and MI-FGSM.

Suggested Citation

  • Haotian You & Yufang Lu & Haihua Tang, 2023. "Plant Disease Classification and Adversarial Attack Using SimAM-EfficientNet and GP-MI-FGSM," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1233-:d:1029944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1233/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dasen Li & Zhendong Yin & Yanlong Zhao & Wudi Zhao & Jiqing Li, 2023. "MLFAnet: A Tomato Disease Classification Method Focusing on OOD Generalization," Agriculture, MDPI, vol. 13(6), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1233-:d:1029944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.