IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15994-d1281174.html
   My bibliography  Save this article

A Cluster-Then-Route Framework for Bike Rebalancing in Free-Floating Bike-Sharing Systems

Author

Listed:
  • Jiaqing Sun

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

  • Yulin He

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

  • Jiantong Zhang

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

Abstract

Bike-sharing systems suffer from the problem of imbalances in bicycle inventory between areas. In this paper, we investigate the rebalancing problem as it applies to free-floating bike-sharing systems in which the bicycles can be rented and returned almost anywhere. To solve the rebalancing problem efficiently, we propose a framework that includes (1) rebalancing nodes at which requirements for the redistribution (pickup or delivery) of bicycles are determined, (2) “self-balanced” clusters of rebalancing nodes, and (3) bicycle redistribution by service vehicles within each cluster. We propose a multi-period synchronous rebalancing method in which a rebalancing period is divided into several sub-periods. Based on the anticipated redistribution demand at each node in each sub-period, the service vehicle relocates bicycles between nodes. This method improves the efficiency of the system and minimizes rebalancing costs over the entire rebalancing period, rather than for a single sub-period. The proposed framework is tested based on data from the Mobike (Meituan) free-floating bike-sharing system. The test results demonstrate the effectiveness of the proposed methodologies and show that multi-period synchronous rebalancing is superior to single-period rebalancing.

Suggested Citation

  • Jiaqing Sun & Yulin He & Jiantong Zhang, 2023. "A Cluster-Then-Route Framework for Bike Rebalancing in Free-Floating Bike-Sharing Systems," Sustainability, MDPI, vol. 15(22), pages 1-33, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15994-:d:1281174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    2. Li, Yanfeng & Szeto, W.Y. & Long, Jiancheng & Shui, C.S., 2016. "A multiple type bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 263-278.
    3. Daniel Gervini & Manoj Khanal, 2019. "Exploring patterns of demand in bike sharing systems via replicated point process models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 585-602, April.
    4. Bruno P. Bruck & Fábio Cruz & Manuel Iori & Anand Subramanian, 2019. "The Static Bike Sharing Rebalancing Problem with Forbidden Temporary Operations," Transportation Science, INFORMS, vol. 53(3), pages 882-896, May.
    5. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    6. Regue, Robert & Recker, Will, 2014. "Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 192-209.
    7. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    8. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    9. Zhang, Yuhan & Shao, Yichang & Bi, Hui & Aoyong, Li & Ye, Zhirui, 2023. "Bike-sharing systems rebalancing considering redistribution proportions: A user-based repositioning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    2. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    3. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    5. Wang, Yi-Jia & Kuo, Yong-Hong & Huang, George Q. & Gu, Weihua & Hu, Yaohua, 2022. "Dynamic demand-driven bike station clustering," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    6. Cheng, Yao & Wang, Junwei & Wang, Yan, 2021. "A user-based bike rebalancing strategy for free-floating bike sharing systems: A bidding model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    7. Xue Bai & Ning Ma & Kwai-Sang Chin, 2022. "Hybrid Heuristic for the Multi-Depot Static Bike Rebalancing and Collection Problem," Mathematics, MDPI, vol. 10(23), pages 1-28, December.
    8. Wang, Xu & Sun, Huijun & Zhang, Si & Lv, Ying & Li, Tongfei, 2022. "Bike sharing rebalancing problem with variable demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    9. Bahman Lahoorpoor & Hamed Faroqi & Abolghasem Sadeghi-Niaraki & Soo-Mi Choi, 2019. "Spatial Cluster-Based Model for Static Rebalancing Bike Sharing Problem," Sustainability, MDPI, vol. 11(11), pages 1-21, June.
    10. VERGEYLEN, Nicholas & SÖRENSEN, Kenneth & PALHAZI CUERVO, Daniel, 2018. "Solution space analysis for the bike request scheduling problem," Working Papers 2018005, University of Antwerp, Faculty of Business and Economics.
    11. Ye Ding & Jiantong Zhang & Jiaqing Sun, 2022. "Branch-and-Price-and-Cut for the Heterogeneous Fleet and Multi-Depot Static Bike Rebalancing Problem with Split Load," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    12. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    13. Li, Yanfeng & Liu, Yang, 2021. "The static bike rebalancing problem with optimal user incentives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    14. Zhang, J. & Meng, M. & Wang, David, Z.W., 2019. "A dynamic pricing scheme with negative prices in dockless bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 201-224.
    15. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    16. Maggioni, Francesca & Cagnolari, Matteo & Bertazzi, Luca & Wallace, Stein W., 2019. "Stochastic optimization models for a bike-sharing problem with transshipment," European Journal of Operational Research, Elsevier, vol. 276(1), pages 272-283.
    17. Zhang, Jie & Meng, Meng & Wong, Yiik Diew & Ieromonachou, Petros & Wang, David Z.W., 2021. "A data-driven dynamic repositioning model in bicycle-sharing systems," International Journal of Production Economics, Elsevier, vol. 231(C).
    18. Osorio, Jesus & Lei, Chao & Ouyang, Yanfeng, 2021. "Optimal rebalancing and on-board charging of shared electric scooters," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 197-219.
    19. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    20. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15994-:d:1281174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.