Author
Listed:
- Meera Ramesh
(Ryan Biggs Clark Davis, New York, NY 12065, USA)
- Manuel Parente
(Department of Civil Engineering, University of Minho, ISISE, ARISE, 4800-058 Guimarães, Portugal)
- Miguel Azenha
(Department of Civil Engineering, University of Minho, ISISE, ARISE, 4800-058 Guimarães, Portugal)
- Paulo B. Lourenço
(Department of Civil Engineering, University of Minho, ISISE, ARISE, 4800-058 Guimarães, Portugal)
Abstract
The choice of a sustainable construction material needs to take into account not just the environmental impact of the material, but according to the 2030 Agenda for Sustainable Development by the UN, one also needs to consider ease of access, the utilization of locally available materials, and the durability and reliability of the construction itself. Mortared masonry has been used around the world for several hundred years as an accessible type of construction. In masonry mortars, lime and cement are often integrated together for combined advantages: enhanced workability, breathability, and better environmental performance due to the former, and higher strength and shorter setting duration due to the latter. However, despite being extensively studied for their effects on the mechanical properties of mortar, not much is known about the impact of varying lime and cement ratios in the binder on the mechanical performance of masonry as a whole. Variations in the properties of mortars do not always have a significant impact on the mechanical behavior of masonry structures. Therefore, this article details an experimental campaign to measure the compressive strength, E-modulus, flexural strength, and shear bond strength of masonry samples containing two distinct lime–cement mortars (1:2:9 and 1:1:6 cement:lime:sand) and one cement mortar (1:0:5). The results show that more than the presence of lime in the mortar, the strength of the mortar influenced the flexural strength of the masonry ranging from 0.1 to 1.2 MPa. No discernable correlation was observed between the presence of lime in the mortar and the cohesion in the masonry (0.29 to 0.41 MPa). The values of the compressive strength (6.0 to 7.2 MPa) and E-modulus (3.8 to 4.5 GPa) of the masonry decreased and pre-peak ductility increased with an increase in the quantity of lime in the mortar. The recommendations of Eurocode 6 for the flexural strength of the initial shear bond strength were found to be conservative for different mortar strength classes, and significantly unconservative for compressive strength (by 50% to 70%).
Suggested Citation
Meera Ramesh & Manuel Parente & Miguel Azenha & Paulo B. Lourenço, 2023.
"Influence of Lime on Strength of Structural Unreinforced Masonry: Toward Improved Sustainability in Masonry Mortars,"
Sustainability, MDPI, vol. 15(21), pages 1-19, October.
Handle:
RePEc:gam:jsusta:v:15:y:2023:i:21:p:15320-:d:1268012
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15320-:d:1268012. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.