IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14803-d1258511.html
   My bibliography  Save this article

Experimental and Modeled Results Describing the Low-Concentration Acetone Adsorption onto Coconut Shell Activated Carbon

Author

Listed:
  • Ying Sheng

    (Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

  • Qiang Ren

    (Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

  • Qingqing Dong

    (Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

Abstract

Polar VOCs represented by ketones deteriorate indoor air quality and affect human health. Adsorption by activated carbons can effectively remove harmful gases, but relatively little is known about the adsorption capacity of polar VOCs at a low concentration level. So, this paper adopted acetone as the typical polar VOC to test its adsorption on the coconut shell activated carbon and developed a prediction model to estimate the breakthrough time. The results will help users master the acetone adsorption behavior under realistic conditions and thus estimate the service life of the filters. The adsorption test of acetone with concentrations of 0.5, 1.0, 2.0, 3.0, and 4.0 ppm was carried out. Four adsorption isotherms, namely, Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin, were used to fit the data. The Freundlich model fitted best when was used to determine the equilibrium capacity of acetone. An approach based on the Thomas model was proposed to predict the acetone breakthrough curve. The mass transfer coefficient of acetone adsorption with a relatively high concentration (1.0–4.0 ppm) was calculated based on the Thomas model, and the relationship between the mass transfer coefficient and acetone inlet concentration was established to obtain the mass transfer coefficient of acetone at the predicted concentration. The equilibrium capacity and mass transfer coefficient were substituted into the Thomas model to predict the breakthrough curve of acetone at a lower concentration. The results showed that the shape of the predicted curve was much closer to the measured data of acetone adsorption. The relative deviation between the predicted service life and measured data was 10%, indicating that the Thomas model was suitable for predicting acetone adsorption at low concentrations.

Suggested Citation

  • Ying Sheng & Qiang Ren & Qingqing Dong, 2023. "Experimental and Modeled Results Describing the Low-Concentration Acetone Adsorption onto Coconut Shell Activated Carbon," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14803-:d:1258511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiurski, Jelena S. & Marić, Branislav B. & Aksentijević, Snežana M. & Oros, Ivana B. & Kecić, Vesna S. & Kovacˇević, Ilija M., 2013. "Indoor air quality investigation from screen printing industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 224-231.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Zhu & Lu, Hao & Zhao, Wenjun & tuerxunjiang, Ailidaer & Chang, Xiqiang, 2023. "Materials, performances and applications of electric heating films," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Zhou, Zhihua & Liu, Yurong & Yuan, Jianjuan & Zuo, Jian & Chen, Guanyi & Xu, Linyu & Rameezdeen, Raufdeen, 2016. "Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 372-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14803-:d:1258511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.