IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14779-d1258021.html
   My bibliography  Save this article

A Review of Strategies to Enhance the Water Resistance of Green Wood Adhesives Produced from Sustainable Protein Sources

Author

Listed:
  • Olatunji V. Oni

    (Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

  • Michael A. Lawrence

    (Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

  • Mark E. Zappi

    (Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
    Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

  • William M. Chirdon

    (Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
    Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

Abstract

The health risks associated with formaldehyde have propelled relevant stakeholders to push for the production of non-toxic wood adhesives. Several countries including the USA, Japan, and Germany have implemented policies mandating manufacturers to reduce the emissions of formaldehyde to lower levels. Protein adhesives stand out due to their sustainability, renewable sources, and biodegradability. However, they are limited by poor wet strength and water resistance, which affect their wide acceptability in the marketplace. Researchers have developed multiple strategies to mitigate these issues to advance protein adhesives so they may compete more favorably with their petroleum-based counterparts. This review paper explores these strategies including cross-linking, modified fillers, and the removal of hydrophilic content while providing insights into the methodological approaches utilized in recent literature with a comparison of the resultant protein adhesives.

Suggested Citation

  • Olatunji V. Oni & Michael A. Lawrence & Mark E. Zappi & William M. Chirdon, 2023. "A Review of Strategies to Enhance the Water Resistance of Green Wood Adhesives Produced from Sustainable Protein Sources," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14779-:d:1258021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haeshin Lee & Bruce P. Lee & Phillip B. Messersmith, 2007. "A reversible wet/dry adhesive inspired by mussels and geckos," Nature, Nature, vol. 448(7151), pages 338-341, July.
    2. Mark E. Zappi & Alex Zappi & Emmanuel Revellame & Wayne Sharp & Dhan Lord Fortela & Rafael Hernandez & Terrence Chambers & Kary Ritter & Daniel Gang, 2020. "An Assessment of the Potential to Produce Commercially Valuable Lipids on Highway Right-of-Way Land Areas Located Within the Southeastern United States," Sustainability, MDPI, vol. 12(13), pages 1-38, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongchun Liu & Ke Li & Juanhua Tian & Aiting Gao & Lihua Tian & Hao Su & Shuting Miao & Fei Tao & Hao Ren & Qingmin Yang & Jing Cao & Peng Yang, 2023. "Synthesis of robust underwater glues from common proteins via unfolding-aggregating strategy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Bohan Cheng & Jinhong Yu & Toma Arisawa & Koki Hayashi & Joseph J. Richardson & Yasushi Shibuta & Hirotaka Ejima, 2022. "Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Zhizhi Zhang & Chenxi Qin & Haiyan Feng & Yangyang Xiang & Bo Yu & Xiaowei Pei & Yanfei Ma & Feng Zhou, 2022. "Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14779-:d:1258021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.