IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i1p865-d1023923.html
   My bibliography  Save this article

Hydraulically Disconnected Rivers in the Highlands and Southern Riverine Plain of S.E Australia

Author

Listed:
  • Phillip G. Macumber

    (Phillip Macumber Consulting Services, Melbourne, VIC 3111, Australia)

Abstract

The rivers of south-eastern Australia flow within a complex meander tract (Coonambidgal Formation) formed by phases of Quaternary stream activity. Pumping tests, hydrochemistry and groundwater monitoring of the Campaspe, Loddon and Murray River Valleys show that for significant parts of their courses, the rivers and their associated strip aquifers form a single integrated hydraulic unit perched above and disconnected from the regional water table by an underlying aquitard developed at the top of a varyingly thick and temporally dynamic vadose zone. Loss to the regional aquifer is not restricted to the riverbed but covers the entire width of the Coonambidgal Formation aquifer, which is one or two orders of magnitude greater. River-bed flux is not a measure of net river loss. Through diffusion and dispersion from the overlying saturated zone, aquitard enhancement or development is augmented by chemical processes active towards the top of the vadose zone. Unlike river-bed clogging, chemical clogging of aquifers is progressive and permanent. Post-European instability in the studied groundwater systems has seen catchment wide groundwater rises of up to 0.25 m/y. or 25 metre over the last century. Under the pre-existing norm of deeper water tables, disconnected streams would have been more numerous with the present aquitards being a legacy of that regime.

Suggested Citation

  • Phillip G. Macumber, 2023. "Hydraulically Disconnected Rivers in the Highlands and Southern Riverine Plain of S.E Australia," Sustainability, MDPI, vol. 15(1), pages 1-35, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:1:p:865-:d:1023923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Hu & Linmei Liu & Ruihui Chen & Yi Li & Panwen Li & Haiyang Chen & Gang Liu & Yanguo Teng, 2022. "The Impact of Clogging Issues at a Riverbank Filtration Site in the Lalin River, NE, China: A Laboratory Column Study," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:1:p:865-:d:1023923. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.