IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14640-d1256151.html
   My bibliography  Save this article

Municipal Solid Waste Composition and Generation with Emphasis on Plastics in Nablus City, Palestine

Author

Listed:
  • Issam A. Al-Khatib

    (Institute of Environmental and Water Studies, Birzeit University, Birzeit 00972, Palestine)

  • Jinyang Guo

    (Institute of Circular Resource Engineering and Management, Hamburg University of Technology, Blohmstraße 15, D-21079 Hamburg, Germany)

  • Kerstin Kuchta

    (Institute of Circular Resource Engineering and Management, Hamburg University of Technology, Blohmstraße 15, D-21079 Hamburg, Germany)

  • Anas A. Draidi

    (Universal Institute of Applied and Health Research, Nablus P.O. Box 7, Palestine)

  • Sawsan Y. Abu Amara

    (Universal Institute of Applied and Health Research, Nablus P.O. Box 7, Palestine)

  • Ayah Alassali

    (Institute of Circular Resource Engineering and Management, Hamburg University of Technology, Blohmstraße 15, D-21079 Hamburg, Germany)

Abstract

The aim of this study was to characterize the municipal solid waste (MSW) in Nablus city in Palestine, while focusing on the plastic waste fraction. The plastic fraction—an environmentally problematic waste stream—was further characterized into the different polymer types and formats with the aim of suggesting feasible recovery and recycling solutions. Locally generated studies lack data about the recyclable fractions in the MSW and a thorough characterization of the plastic waste stream, although there is global action to minimize and optimally treat this waste fraction. The composition analysis was conducted by collecting 60 samples from five districts with different characteristics (e.g., income, density, level of education, building formats). The fraction of bio- and organic waste is significant in the collected MSW in Nablus, representing about 68% of the total MSW. The recyclables (paper and cardboard, glass, metals and plastics) amount to 27.4% of the generated MSW in the city. The plastic fraction (10.1%) is mainly composed of low-density polyethylene (LDPE) films (39.8%), polyethylene terephthalate (PET) bottles (21.9%), high-density polyethylene (HDPE) rigids (19.0%), and polypropylene (PP) rigids (11.5%), all of which are technologically recyclable. The polymer types and container formats indicated that the collected plastics originate mostly from packaging. The outcomes of this research indicate the need to implement a separate collection system for the organic waste fraction, which could be used to produce compost for the agricultural activities in the region. By having such a system, the dry recyclables (including plastics) can be easily recovered with less degree of contamination for recycling, helping the local recyclers to access cleaner materials. Furthermore, the state of Palestine lacks strict regulations for the end-of-life treatment of the different waste fractions; therefore, having clear guidelines and incentive systems will result in the minimization of the generated waste as well as better achievement of recovery and recycling targets. In addition, expertise, funding, public awareness, facilities, equipment and other provisions are currently lacking or inappropriate. In future, these factors must be addressed to enhance sustainable solid waste management.

Suggested Citation

  • Issam A. Al-Khatib & Jinyang Guo & Kerstin Kuchta & Anas A. Draidi & Sawsan Y. Abu Amara & Ayah Alassali, 2023. "Municipal Solid Waste Composition and Generation with Emphasis on Plastics in Nablus City, Palestine," Sustainability, MDPI, vol. 15(19), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14640-:d:1256151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciprian Cimpan & Eivind Lekve Bjelle & Anders Hammer Strømman, 2021. "Plastic packaging flows in Europe: A hybrid input‐output approach," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1572-1587, December.
    2. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Ayah Alassali & Caterina Picuno & Zhi Kai Chong & Jinyang Guo & Roman Maletz & Kerstin Kuchta, 2021. "Towards Higher Quality of Recycled Plastics: Limitations from the Material’s Perspective," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    2. Andrzej Pacana & Dominika Siwiec & Jacek Pacana, 2023. "Fuzzy Method to Improve Products and Processes Considering the Approach of Sustainable Development (FQE-SD Method)," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    3. Christoph Stallkamp & Justus Steins & Manuel Ruck & Rebekka Volk & Frank Schultmann, 2022. "Designing a Recycling Network for the Circular Economy of Plastics with Different Multi-Criteria Optimization Approaches," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    4. Žaneta Stasiškienė & Jelena Barbir & Lina Draudvilienė & Zhi Kai Chong & Kerstin Kuchta & Viktoria Voronova & Walter Leal Filho, 2022. "Challenges and Strategies for Bio-Based and Biodegradable Plastic Waste Management in Europe," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    5. Jakob T. Pruess, 2023. "Unraveling the complexity of extended producer responsibility policy mix design, implementation, and transfer dynamics in the European Union," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1500-1520, December.
    6. Mohammed Alghassab, 2023. "A Computational Case Study on Sustainable Energy Transition in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(13), pages 1-18, July.
    7. Wang, Qipeng & Zhao, Liang, 2023. "Data-driven stochastic robust optimization of sustainable utility system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Bihter Gizem Demircan & Kaan Yetilmezsoy, 2023. "A Hybrid Fuzzy AHP-TOPSIS Approach for Implementation of Smart Sustainable Waste Management Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    9. Anna E. Tovkach & John C. Boyle & Enoch A. Nagelli & Corey M. James & Pamela L. Sheehan & Andrew R. Pfluger, 2023. "Structured decision making for assessment of solid waste-to-energy systems for decentralized onsite applications," Environment Systems and Decisions, Springer, vol. 43(1), pages 54-71, March.
    10. Ina Marie Raible & Christina Holweg & Gerald Reiner & Christoph Teller, 2024. "Returnable packaging systems and store operations: Processes, costs, and benefits," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 439-454, June.
    11. Felipe Romero-Perdomo & Miguel Ángel González-Curbelo, 2023. "Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    12. Marta Skiba & Maria Mrówczyńska & Małgorzata Sztubecka & Alicja Maciejko & Natalia Rzeszowska, 2023. "The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal," Energies, MDPI, vol. 16(17), pages 1-26, August.
    13. Meng Jiang & Yuheng Cao & Changgong Liu & Dingjiang Chen & Wenji Zhou & Qian Wen & Hejiang Yu & Jian Jiang & Yucheng Ren & Shanying Hu & Edgar Hertwich & Bing Zhu, 2024. "Tracing fossil-based plastics, chemicals and fertilizers production in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Weixin Yang & Hao Gao & Yunpeng Yang & Jiacheng Liao, 2022. "Embodied Carbon in China’s Export Trade: A Multi Region Input-Output Analysis," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    15. Mancini, G. & Lombardi, L. & Luciano, A. & Bolzonella, D. & Viotti, P. & Fino, D., 2024. "A reduction in global impacts through a waste-wastewater-energy nexus: A life cycle assessment," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14640-:d:1256151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.