IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14597-d1255680.html
   My bibliography  Save this article

Vehicle Detection and Classification via YOLOv8 and Deep Belief Network over Aerial Image Sequences

Author

Listed:
  • Naif Al Mudawi

    (Department of Computer Science, College of Computer Science and Information System, Najran University, Najran 55461, Saudi Arabia)

  • Asifa Mehmood Qureshi

    (Department of Creative Technologies, Air University, E-9, Islamabad 44000, Pakistan)

  • Maha Abdelhaq

    (Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Abdullah Alshahrani

    (Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah 23218, Saudi Arabia)

  • Abdulwahab Alazeb

    (Department of Computer Science, College of Computer Science and Information System, Najran University, Najran 55461, Saudi Arabia)

  • Mohammed Alonazi

    (Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia)

  • Asaad Algarni

    (Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia)

Abstract

Vehicle detection and classification are the most significant and challenging activities of an intelligent traffic monitoring system. Traditional methods are highly computationally expensive and also impose restrictions when the mode of data collection changes. This research proposes a new approach for vehicle detection and classification over aerial image sequences. The proposed model consists of five stages. All of the images are preprocessed in the first stage to reduce noise and raise the brightness level. The foreground items are then extracted from these images using segmentation. The segmented images are then passed onto the YOLOv8 algorithm to detect and locate vehicles in each image. The feature extraction phase is then applied to the detected vehicles. The extracted feature involves Scale Invariant Feature Transform (SIFT), Oriented FAST and Rotated BRIEF (ORB), and KAZE features. For classification, we used the Deep Belief Network (DBN) classifier. Based on classification, the experimental results across the three datasets produced better outcomes; the proposed model attained an accuracy of 95.6% over Vehicle Detection in Aerial Imagery (VEDAI) and 94.6% over Vehicle Aerial Imagery from a Drone (VAID) dataset, respectively. To compare our model with the other standard techniques, we have also drawn a comparative analysis with the latest techniques in the research.

Suggested Citation

  • Naif Al Mudawi & Asifa Mehmood Qureshi & Maha Abdelhaq & Abdullah Alshahrani & Abdulwahab Alazeb & Mohammed Alonazi & Asaad Algarni, 2023. "Vehicle Detection and Classification via YOLOv8 and Deep Belief Network over Aerial Image Sequences," Sustainability, MDPI, vol. 15(19), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14597-:d:1255680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pei-Chun Chen & Yen-Cheng Chiang & Pei-Yi Weng, 2020. "Imaging Using Unmanned Aerial Vehicles for Agriculture Land Use Classification," Agriculture, MDPI, vol. 10(9), pages 1-14, September.
    2. Hafiz Suliman Munawar & Fahim Ullah & Siddra Qayyum & Sara Imran Khan & Mohammad Mojtahedi, 2021. "UAVs in Disaster Management: Application of Integrated Aerial Imagery and Convolutional Neural Network for Flood Detection," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Ekhlakov & Nikita Andriyanov, 2024. "Multicriteria Assessment Method for Network Structure Congestion Based on Traffic Data Using Advanced Computer Vision," Mathematics, MDPI, vol. 12(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafiz Suliman Munawar & Hina Inam & Fahim Ullah & Siddra Qayyum & Abbas Z. Kouzani & M. A. Parvez Mahmud, 2021. "Towards Smart Healthcare: UAV-Based Optimized Path Planning for Delivering COVID-19 Self-Testing Kits Using Cutting Edge Technologies," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    3. Kamran Iqbal & Hafiz Suliman Munawar & Hina Inam & Siddra Qayyum, 2021. "Promoting Customer Loyalty and Satisfaction in Financial Institutions through Technology Integration: The Roles of Service Quality, Awareness, and Perceptions," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    4. Hanchao Liu & Yuan Qi & Wenwei Xiao & Haoxin Tian & Dehua Zhao & Ke Zhang & Junqi Xiao & Xiaoyang Lu & Yubin Lan & Yali Zhang, 2022. "Identification of Male and Female Parents for Hybrid Rice Seed Production Using UAV-Based Multispectral Imagery," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    5. Barbara Dobosz & Dariusz Gozdowski & Jerzy Koronczok & Jan Žukovskis & Elżbieta Wójcik-Gront, 2023. "Evaluation of Maize Crop Damage Using UAV-Based RGB and Multispectral Imagery," Agriculture, MDPI, vol. 13(8), pages 1-14, August.
    6. Mohammad Fatin Fatihur Rahman & Shurui Fan & Yan Zhang & Lei Chen, 2021. "A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture," Agriculture, MDPI, vol. 11(1), pages 1-26, January.
    7. Jerzy Chojnacki & Aleksandra Pachuta, 2021. "Impact of the Parameters of Spraying with a Small Unmanned Aerial Vehicle on the Distribution of Liquid on Young Cherry Trees," Agriculture, MDPI, vol. 11(11), pages 1-13, November.
    8. Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
    9. Hafiz Suliman Munawar & Sara Imran Khan & Fahim Ullah & Abbas Z. Kouzani & M. A. Parvez Mahmud, 2021. "Effects of COVID-19 on the Australian Economy: Insights into the Mobility and Unemployment Rates in Education and Tourism Sectors," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    10. Fahim Ullah & Sara Imran Khan & Hafiz Suliman Munawar & Zakria Qadir & Siddra Qayyum, 2021. "UAV Based Spatiotemporal Analysis of the 2019–2020 New South Wales Bushfires," Sustainability, MDPI, vol. 13(18), pages 1-32, September.
    11. Sheikh Kamran Abid & Noralfishah Sulaiman & Shiau Wei Chan & Umber Nazir & Muhammad Abid & Heesup Han & Antonio Ariza-Montes & Alejandro Vega-Muñoz, 2021. "Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management," Sustainability, MDPI, vol. 13(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14597-:d:1255680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.