IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14511-d1254163.html
   My bibliography  Save this article

Timetable Rescheduling Using Skip-Stop Strategy for Sustainable Urban Rail Transit

Author

Listed:
  • Zhichao Cao

    (School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Chengdu 610041, China
    Guangdong-Hong Kong-Macau Joint Laboratory for Smart Cities, Shenzhen 518100, China)

  • Yuqing Wang

    (School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China)

  • Zihao Yang

    (School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China)

  • Changjun Chen

    (School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China)

  • Silin Zhang

    (School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China)

Abstract

Unanticipated events inevitably occur in daily urban rail transit operations, disturbing the scheduled timetable. Despite the mild delay, the busy operation system probably tends to worsen a larger disturbance and even lead to a knock-on disruption if no rescheduling is timely carried out. We propose a bi-objective mixed-integer linear programming model (MILP) that employs the skip-stop operation strategy to eliminate unscheduled delays. This model addresses two distinct, yet interconnected objectives. Firstly, it aims to minimize the difference between the plan and the actual operation. Secondly, it strives to minimize the number of left-behind passengers. In order to resolve this MILP problem, we devised a Pareto-based genetic algorithm (GA). Based on the case study, we certify the superior effectiveness with comparisons to the whale optimization algorithm and the epsilon constraint method. The outcomes affirm that our model has the potential to reduce the total delay time of the line by 44.52% at most compared with the traditional all-stop running adjustment model. The optimal scheme saved 6.08% of the total costs based on a trade-off between operators’ interests and passenger satisfaction.

Suggested Citation

  • Zhichao Cao & Yuqing Wang & Zihao Yang & Changjun Chen & Silin Zhang, 2023. "Timetable Rescheduling Using Skip-Stop Strategy for Sustainable Urban Rail Transit," Sustainability, MDPI, vol. 15(19), pages 1-29, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14511-:d:1254163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Zhenyu & Han, Baoming & Li, Dewei & Ning, Shangbin & Yang, Ruixia & Yin, Yonghao, 2021. "Train timetabling in rail transit network under uncertain and dynamic demand using Advanced and Adaptive NSGA-II," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 65-99.
    2. Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2017. "Joint optimal train regulation and passenger flow control strategy for high-frequency metro lines," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 113-137.
    3. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    4. Yang, Lixing & Qi, Jianguo & Li, Shukai & Gao, Yuan, 2016. "Collaborative optimization for train scheduling and train stop planning on high-speed railways," Omega, Elsevier, vol. 64(C), pages 57-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunfang Ma & Jose M. Sallan & Oriol Lordan, 2024. "Rail Transit Networks and Network Motifs: A Review and Research Agenda," Sustainability, MDPI, vol. 16(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    2. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    3. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    4. Pan, Hanchuan & Yang, Lixing & Liang, Zhe, 2023. "Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: A column-generation-based approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 184-206.
    5. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    6. Limsawasd, Charinee & Athigakunagorn, Nathee & Khathawatcharakun, Phattadon & Boonmee, Atiwat, 2022. "Skip-Stop Strategy Patterns optimization to enhance mass transit operation under physical distancing policy due to COVID-19 pandemic outbreak," Transport Policy, Elsevier, vol. 126(C), pages 225-238.
    7. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    8. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    9. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    10. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    11. Xin Zhang & Lei Nie & Xin Wu & Yu Ke, 2020. "How to Optimize Train Stops under Diverse Passenger Demand: a New Line Planning Method for Large-Scale High-Speed Rail Networks," Networks and Spatial Economics, Springer, vol. 20(4), pages 963-988, December.
    12. Shuo Zhao & Xiwei Mi & Zhenyi Li, 2019. "A Stop-Probability Approach for O-D Service Frequency on High-Speed Railway Lines," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    13. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    14. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    15. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    16. Liu, Xiaoyu & Dabiri, Azita & Xun, Jing & De Schutter, Bart, 2023. "Bi-level model predictive control for metro networks: Integration of timetables, passenger flows, and train speed profiles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    17. Hu, Yuting & Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2022. "Computationally efficient train timetable generation of metro networks with uncertain transfer walking time to reduce passenger waiting time: A generalized Benders decomposition-based method," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 210-231.
    18. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    20. Tatsuki Yamauchi & Mizuyo Takamatsu & Shinji Imahori, 2023. "Optimizing train stopping patterns for congestion management," Public Transport, Springer, vol. 15(1), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14511-:d:1254163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.